
presented by

Using Capsules for Firmware
Configuration Update
Spring 2019 UEFI Plugfest

April 8-12, 2019
Presented by Zachary Bobroff (AMI)

www.uefi.org 1

Agenda

• Introduction

• History of BIOS/UEFI FW Setup

• UEFI Capsules

• Putting it Together

• Security Considerations

• Call to Action

www.uefi.org 2

Introduction

www.uefi.org 3

New Capsule Type in UEFI 2.8

• Version 2.8 of the UEFI allows for the exchange of configuration data
between the operating system (OS) and the UEFI firmware

• OsIndications flags were extended so that the OS can request the export
of configuration data

– Please review EFI_OS_INDICATIONS_JSON_CONFIG_DATA_REFRESH
flag from section 8.5.4

– Note: OsIndications has already provided a method for the user to
inform the firmware to enter the setup browser on the next reboot

• The OS can also provide a capsule back to the firmware to update
configuration data of the UEFI firmware

www.uefi.org 4

What is Configuration Data?
• The UEFI spec definition for configuration data is very abstract, that allows

for many types of configuration data to be processed

• The most obvious use case allows the OS to read the current UEFI Human
Interface Infrastructure (HII) settings and provide updates when needed

• OS can provide visual display or other built in methods to read and update
the settings on the next reboot

– Allows for clean integration of OS settings

– Can be very useful for headless systems that do not have a standard
method to enter a setup browser

• With any new powerful feature, certain security measures must be
implemented!

www.uefi.org 5

History of BIOS/UEFI Firmware Setup

www.uefi.org 6

Legacy BIOS Setup

• BIOS configuration data has existed since the early days of x86
firmware

• Every implementation has been proprietary, with different look
and feel, and provided different levels of features and
functionality

• Plug-in cards even provided their own pre-boot configuration
interface that added further differentiation in the configuration
realm

www.uefi.org 7

Pictures of Old BIOS Setup

www.uefi.org 8

Pictures of Old BIOS Setup

www.uefi.org 9
Citation: https://en.wikipedia.org/wiki/BIOS#/media/File:Award_BIOS_setup_utility.png

https://en.wikipedia.org/wiki/BIOS/media/File:Award_BIOS_setup_utility.png

UEFI Firmware Configuration

• When UEFI was introduced, the specification architects
wanted to provide a common set of features for
configuration

• Data from firmware is posted into the HII in packs

• Firmware provides a browser that reads the HII data
and provides a method to interactively configure these
settings

• Still allows for a highly customizable look and feel, but
common set of features and functionality

www.uefi.org 10

Modern Picture of UEFI FW Setup Browser

www.uefi.org 11

HII Extensibility

• HII is highly extensible and allows plug-in card
vendors or 3rd party binary providers to add
content into the HII database

• One HII database allows one setup browser to
provide a unified look and feel for all platform
settings

• HII still allows for many of the demanding needs of
firmware configuration, but pushes the industry to
use a common set of standard methods

www.uefi.org 12

UEFI Adds High Level Abstractions

• The UEFI specification has evolved through the years and
added several high level abstractions

• One key addition was in UEFI 2.5 and is the
EFI_CONFIG_KEYWORD_HANDLER_PROTOCOL in section
35.3 which abstracts the platform configuration data

– Can allow for a script based configuration of a platform

– You no longer need to worry about what driver/code
publishes a configuration knob

– You can just use the generic protocol that talks to a
variety of platform level APIs to configure anything on
the platform

www.uefi.org 13

Keyword

HII Data Platform Config

UEFI Capsules

www.uefi.org 14

UEFI Capsules

• UEFI Introduced Capsules in UEFI 2.0

• Capsules were mainly used for passing binary blobs of
data between the OS and the firmware
– Capsules could be used to pass information from other

sources too

– UpdateCapsule is a runtime service, but most capsule
processing is typically available only prior to
ExitBootServices()

• Capsule use remained limited in the early days of
UEFI. They were mainly used for some proprietary
data passing

www.uefi.org 15

Capsule Usage Expands

• Capsule usage started to expand greatly with the advent of SP
NIST 800-147

• NIST 800-147 mandated that the most secure method for
updating of the platform firmware was on a reboot

• Best method to pass the firmware image over a reboot was a
capsule!

• Capsules are commonly used for firmware update methods
such as ESRT or using FMP for plug-in card firmware updates

www.uefi.org 16

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-147.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-147.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-147.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-147.pdf

Putting it Together

www.uefi.org 17

Current Config Data Export Flow

www.uefi.org 18

OS sets OsIndications bit
requesting configuration

data

Firmware processes
OsIndications

System reboots

Firmware publishes
pointer to current

configuration data on
SystemConfigurationTable

OS boots and retrieves
current configuration

data from
SystemConfigurationTable

OS drivers or applications
read and process current

configuration data

JSON Config Data Capsule Flow

www.uefi.org 19

UpdateCapsule() called
with optional system

reset

Capsule is recognized as
JSON Capsule

Standard UEFI/PI capsule
processing takes place

JSON Capsule(s) are
placed on

SystemConfigurationTable

UEFI Driver(s) check
SystemConfigurationTable

and process data

UEFI Driver(s) install
results from JSON

processing on
SystemConfigurationTable

JSON Config Data Capsule Considerations

• If multiple JSON config capsules are provided, an
array of pointers is installed on the
SystemConfigurationTable

• JSON schema is not defined which allows firmware
vendors and plug-in card vendors to provide
solutions to meet whatever their needs may be

– “It is expected that particular drivers have the
specific knowledge of the JSON schema used in
the payload so that they can describe system
configuration data in JSON then install to the
EFI System Configuration Table”, UEFI Spec
section 23.5.2

– Allows for more flexibility than just HII
configuration data

www.uefi.org 20

#pragma pack(1)
typedef struct {
UINT32 Version;
UINT32 TotalLength;
// EFI_JSON_CONFIG_DATA_ITEM ConfigDataList[];
} EFI_JSON_CAPSULE_CONFIG_DATA;
#pragma pack ()

typedef struct {
UINT32 ConfigDataLength;
UINT8 ConfigData[ConfigDataLength];
} EFI_JSON_CONFIG_DATA_ITEM;

UEFI Driver/OEM Considerations
• Drivers can use the CreateEventEx using the GUID

EFI_JSON_CAPSULE_DATA_TABLE_GUID to be notified when a JSON
capsule is installed on the SystemConfigurationTabale

• Driver writers should use standardized names for their keywords and
work with the UEFI forum and DMTF to leverage industry standard
keywords when possible
– https://uefi.org/confignamespace

• Driver writers are encouraged to use the keyword handler protocol to
simplify their code for processing JSON configuration capsules and use
similar keywords in their JSON data structures

• OEMs should also make use of industry standard keywords for setup
configuration to allow end customers to manage non-homogenous
hardware simply and effectively

www.uefi.org 21

https://uefi.org/confignamespace

Security Considerations

www.uefi.org 22

Capsule Trust

• Most common use of a UEFI Capsule today is for firmware
upgrade

• According to NIST 800-147 all firmware upgrades must be
digitally signed and verified

• Signature offers a safe level of security to verify the capsule is
authentic and unmodified from the origin

• If a capsule is created within the OS, how can it be trusted?

www.uefi.org 23

Malicious Configuration Capsule Possibilities

• Malicious capsules may try to:

– Change firmware settings to put the system in an
unbootable state

– Change firmware settings related to security components

– Change firmware settings to slow down or delay booting

– Change firmware settings that remove or add a boot option

www.uefi.org 24

How do you mitigate these issues for configuration
capsules?

Mitigating Malicious Issues

• First step in mitigating security issues is to limit your attack
vector

• Only expose configuration settings valuable to this type of
service

– UEFI SecureBoot, TPM and other security device enable/disable
options can still be exported, but without capsule’s ability to change
their settings

• Can these capsules be signed and trusted?

www.uefi.org 25

Config Data Capsule Signing

• Signature database (DB) can be extended with additional public keys

• The private key pair can be used to sign configuration capsules which
could then be trusted

• In a corporate environment this is fine because Network Admin should be
the central control for capsule production and signing

• If in non-corporate environment, can users be trusted not to leave the
private key on their computer?

• A plug-in card trying to use this service via the OS driver or application
adds further layers of complexity

www.uefi.org 26

Call to Action

www.uefi.org 27

Call to Action

• Firmware configuration capsules open up exciting new
possible features

• These features will be powerful so they must be secure

• All UEFI stakeholders should see how to best use
firmware configuration capsules and start a conversation
on best methods to secure their usage

www.uefi.org 28

Thanks for attending the 2019 Spring UEFI
Plugfest

For more information on UEFI Forum and UEFI
Specifications, visit http://www.uefi.org

presented by

www.uefi.org 29

http://www.uefi.org/

