
presented by

ACPI-Lite: Exploring a Simplified
Mechanism for Abstracting Platforms

with ACPI
UEFI 2021 Virtual Plugfest

Tuesday, July 6

Presented by Andrei Warkentin (VMware)

www.uefi.org 1

Meet the Presenter

www.uefi.org 2

Andrei Warkentin
Arm Enablement Architect

Member Company: VMware

Agenda
• What is ACPI?
• What is Device Tree?
• Challenges with ACPI
• Why bother evolving ACPI?
• Abstracting non-IA platforms
• ACPI and embedded and safety-critical systems
• Becoming better at describing and abstracting

Disclaimer: Not meant as an exhaustive analysis of all areas where ACPI could
change/adapt.

What is ACPI?
• A set of firmware tables describing

hardware
• A set of interfaces between OS and

hardware
• Configuration
• Power management

• [optionally] ACPI-specific hardware
• Not just a description – an

abstraction modeling an ”ideal”
system

• Agnostic to the OS running on the
hardware, ideally

What is ACPI?
• Static tables
• Dynamic bytecode

• AML interpreter
• Generates an ACPI Namespace

tree, a hierarchical description of
platform devices

• Methods to abstract device and
platform configuration

• Interaction with hardware
abstracted via Operation Regions
(backed by AML interpreter and
OS/drivers)

What is Device Tree?
• A hierarchical tree data structure, encoding

device characteristics
• Has its roots in a format used to “flatten”

OpenFirmware device tree (traversed via
CIF calls)

• Unlike ACPI, no dynamic methods, no
abstraction, no interpretation

• Unlike OpenFirmware, no CIF, device
methods, etc.

• Minimal support logic to use in OS or boot
loader environments

• Came from Linux, fairly closely bound to
Linux support for various SoCs (e.g.
challenging to support with BSDs)

• Platform adaptation/quirks entirely owned
by OSV

Challenges with ACPI
• ACPI was defined as an overlay to an existing IA platform.

Abstracting non-IA platforms is still a challenge
• Fit for embedded and safety-critical systems
• Choices for servers may not be appropriate for embedded
• Can evolve as a mechanism to meet separate goals

• Becoming better at describing hardware (e.g. configuration for
platform-specific OS/driver components)

• Becoming better at abstracting hardware (avoiding platform
specific drivers)

• Goals == capability, not policy. Actual choice of how ACPI is used
depends on use-case

Why Bother Evolving ACPI?
• Why would anyone want to use ACPI for real-time, embedded, etc.?
• Why not Device Tree?

• Linux is not the only OS
• Device Tree is (today) heavily intertwined with Linux (bindings). Already

a problem for BSDs
• No platform abstraction, even for areas where there’s no benefit from

proliferating differences
• Why try to avoid platform-dependent code in the OS to enable ACPI?

• Not every OS is Linux or Windows
• Generalize OS-specific extensions/assumptions
• Avoid cost of development/maintenance by OSVs for basic platform

support/quirks

Abstracting Non-IA Platforms
• ACPI 5.0 introduced reduced-hardware mode.

• No longer requires fixed ACPI hardware (yay!)
• Relies on OS-backed drivers to provide similar functionality (sigh)
• ACPI encapsulates configuration while requiring OS support for low-level platform internals

(e.g. GPE)
• Addressed in an OS-specific manner via PEPs (“platform extension plug-ins”, a Microsoft-only

extension for dynamic runtime ACPI method via native code)
• ACPI and DT are getting intertwined

• ACPI devices that mirror DT ones (PRP0001, _DSD properties)
• ACPI used more and more to describe, not abstract
• Trails in abstracting the embedded-style hardware that is well-described today by DT (clocks,

power resources, composite devices, complex NIC devices, etc.)
• AML is a bit primitive and very high overhead

• Asynchronous communication with hardware (e.g. Time and Alarm device without an I2C
OpReg)

• IA memory model (how to communicate with cache coherent hardware? PCIe atomics,
barriers, etc.)

• No quick escapes to other firmware outside of IA SMM to reduce dependence on OS drivers

Embedded and Safety-Critical
AML interpreter is huge
• ACPI-CA is 331k lines.
• Requires significant OS support
• Slow (global locked, interpretation)
• High complexity (security, implementation)

Becoming Better at Describing.
How about a valid subset of AML that does not require an
interpreter (has strict scoping rules, no control flow) and “canned”
encodings of returning static data via methods?
• Use case: embedded to support purpose-built software that

can’t embed ACPI-CA (yet is still compatible with a “normal”
AML interpreter)

• Many simpler SoCs don’t really need dynamic behavior
• …still fully compatible with a regular AML interpreter
• Can have a lighter-weight ACPI OS implementation that only

supports fixed/static data with no bytecode interpretation?

Could Take This One Step Further…
Be able to compile DTS (textual) or DTB (binary) into this strict
subset of ACPI
• Use case: transitioning embedded hardware/software vendors

to support general purpose (ACPI) OSes
• Compatible with both regular ACPI interpreter and the lighter-

weight one
• Outside of register / interrupt resources, remaining properties

map to ACPI using Device Properties _DSD

Becoming Better at Abstracting.
Allow AML methods to be selectively implemented in native code (e.g. via Platform
Runtime Mechanism, see PRMT under https://uefi.org/acpi)
• Use case:

• Provide optimal implementations for performance sensitive parts (or parts that
are hard to model with AML), with better sandboxing guarantees that AML

• Get-out-of-jail free card from AML (escape to firmware, ACPI should be about
capable mechanisms, not policy)

• Native != OS-distributed code. Native == machine code owned by SiP/OEM.
• Standardized PEP replacement (“platform extension plug-ins”)

• No reliance on OS-specific extensions
• Mechanism common across any OS
• Code owned/maintained by SiP/OEM, not OSV

• No, you don’t have to use it or allow it in specific solutions. Not all AML needs to
be converted this way, but it’s a way to avoid “why would you want to do that”
kind of conversations around adapting actual hardware to ACPI

https://uefi.org/acpi

Combine Both as Necessary
A strict AML subset (static data) + native
methods enable the development of a smaller,
lighter weight and more flexible ACPI
subsystem, while retaining compatibility with
traditional implementations (ACPI-CA)

Call to Action
• Investigate what a “reduced static AML” could looks like.

• Opt-in, Code-first with ACPI-CA
• Lighter ACPI-CA alternative only supporting “reduced

static AML”
• DT -> “reduced static AML” converter

• Investigate what “native” AML method could look like.
• Opt-in, code-first with ACPI-CA
• Consider different back-ends (PRM? Raw RT? Higher-

privilege calls?)

Questions?

www.uefi.org 16

Thanks for attending the UEFI 2021 Virtual Plugfest

For more information on UEFI Forum and UEFI
Specifications, visit http://www.uefi.org

presented by

www.uefi.org 17

http://www.uefi.org/

	ACPI-Lite: Exploring a Simplified Mechanism for Abstracting Platforms with ACPI
	Meet the Presenter
	Agenda
	What is ACPI?
	What is ACPI?
	What is Device Tree?
	Challenges with ACPI
	Why Bother Evolving ACPI?
	Abstracting Non-IA Platforms
	Embedded and Safety-Critical
	Becoming Better at Describing.
	Could Take This One Step Further…
	Becoming Better at Abstracting.
	Combine Both as Necessary
	Call to Action
	Questions?
	Slide Number 17

