VI":IW& re &1

ACPI-Lite: Exploring a Simplified
Mechanism for Abstracting Platforms
with ACPI

UEFI 2021 Virtual Plugfest
Tuesday, July 6

Presented by Andrei Warkentin (VMware)

www.uefi.org

Meet the Presenter

Arm in the Cioud
Arm at the Edge

- &)

arm .6

Andrei Warkentin
Arm Enablement Architect
Member Company: VMware

www.uefi.org

Agenda

e Whatis ACPI?

e What is Device Tree?

e Challenges with ACPI

e Why bother evolving ACPI?

e Abstracting non-IA platforms

e ACPIl and embedded and safety-critical systems
. Becoming better at describing and abstracting

Disclaimer: Not meant as an exhaustive analysis of all areas where ACPI could
change/adapt.

What is ACPI?

A set of firmware tables describing e
h a rd W a re Dependent Application A E—

A set of interfaces between OS and

hardware TR W i
e Configuration

* Power management Euisting ndusry-

standard register
interfaces

[optionally] ACPI-specific hardware e e

]]) Register Set Static Tables Tables)
Not just a description —an
abstraction modeling an ”“ideal” ——
SyStem : OS-Speciﬁ_c_'l'ec_hnology,notpan of ACPI

Agnostic to the OS runnin g on the B Hardware/Platiorm-specific technologies, not part of ACPI
hardware, ideally

rrrrrrr

[
Fixed ACPI Differentiated System
Description Table Description Table
[)

Static info
. Differentiated
e Static tables pspr | || pefmson _
e Dynamic bytecode .
* AMlLinterpreter e ———— - --
. Generates an ACPI Namespace
tree, a hierarchical description of
platform devices \ J
* Methods to abstract device and o
platform configuration Enber o spaco
* Interaction with hardware Located n systems memory address space
abstracted via Operation Regions A 1

Extended System
Description Table

(backed by AML interpreter and Root System

Description Pointer

OS/drivers) RSD PTR
Paointer
Pointer Entry
Entry |— contents contents

Entry

What is Device Tree?

A hierarchical tree data structure, encoding
device characteristics

Has its roots in a format used to “flatten”
OpenFirmware device tree (traversed via
CIF calls)

Unlike ACPI, no dynamic methods, no
abstraction, no interpretation

Unlike OpenFirmware, no CIF, device
methods, etc.

Minimal support logic to use in OS or boot
loader environments

Came from Linux, fairly closely bound to
Linux support for various SoCs (e.g.
challenging to support with BSDs)

Platform adaptation/quirks entirely owned
by OSV

soc

compatible =

"simple-bus";
#address-cells = <1>;
fsize-cells = <1>;

open—-pic {
clock-frequency = <0>;
interrupt-controller;
#address-cells = <0>;

#interrupt-cells = <2>;
bi
pci |

#interrupt-cells = <1>;

#size-cells = <2Z>;
#address-cells = <3>;

interrupt-map-mask = <0x£800 0 0 7>;

interrupt-map = <
/#* IDSEL 0x11 - PCI
0x8800 0O
0x8800 0O
0x8800 0O
0x8800 O
/' IDSEL
0x2000
0x2000
0x32000
0x32000

x12 - PCI

0
0
0
0

Lo e
I L R S R

slot

0 1 &open-pic 2
0 2 &open-pic 3
0 3 &open-pic 4
0 4 &open-pic 1

slot

Lopen-pic 3
&open-pic 4
&open-pic 1
&open-pic 2

[i B o S N R T ST S

*/
Ve
e
e
e
*/
S *
7
/7
/7

INTA
INTB
INTC
INTD

INTA
INTE
INTC
INTD

*/
*/
*/
*/

*/
*/
*/
*/

Challenges with ACPI @’"ﬂ

e ACPI was defined as an overlay to an existing |IA platform.
Abstracting non-IA platforms is still a challenge

e Fit for embedded and safety-critical systems
e Choices for servers may not be appropriate for embedded

e (Can evolve as a mechanism to meet separate goals

e Becoming better at describing hardware (e.g. configuration for
platform-specific OS/driver components)

e Becoming better at abstracting hardware (avoiding platform
specific drivers)

e Goals == capability, not policy. Actual choice of how ACPI is used
depends on use-case

Why Bother Evolving ACPI? @’ﬂ*]

e Why would anyone want to use ACPI for real-time, embedded, etc.?

e Why not Device Tree?
e Linuxis not the only OS

e Device Tree is (today) heavily intertwined with Linux (bindings). Already
a problem for BSDs

e No platform abstraction, even for areas where there’s no benefit from
proliferating differences

e Why try to avoid platform-dependent code in the OS to enable ACPI?
e Not every OSis Linux or Windows
e Generalize OS-specific extensions/assumptions

e Avoid cost of development/maintenance by OSVs for basic platform
support/quirks

Abstracting Non-IA Platforms

ACPI 5.0 introduced reduced-hardware mode.

. No longer requires fixed ACPI hardware (yay!)

. Relies on OS-backed drivers to provide similar functionality (sigh)

. ACPI encapsulates configuration while requiring OS support for low-level platform internals
(e.g. GPE)

. Addressed in an OS-specific manner via PEPs (“platform extension plug-ins”, a Microsoft-only

extension for dynamic runtime ACPI method via native code)
ACPIl and DT are getting intertwined
. ACPI devices that mirror DT ones (PRP0001, DSD properties)
. ACPI used more and more to describe, not abstract

. Trails in abstracting the embedded-style hardware that is well-described today by DT (clocks,
power resources, composite devices, complex NIC devices, etc.)

AML is a bit primitive and very high overhead

. Asynchronous communication with hardware (e.g. Time and Alarm device without an 12C
OpReg)
. IA memory model (how to communicate with cache coherent hardware? PCle atomics,

barriers, etc.)
. No quick escapes to other firmware outside of IA SMM to reduce dependence on OS drivers

Embedded and Safety-Critical @"ﬂ

AML interpreter is huge
e ACPI-CA is 331k lines.

e Requires significant OS support

 Slow (global locked, interpretation)

 High complexity (security, implementation)

Becoming Better at Describing. @’”ﬂ

How about a valid subset of AML that does not require an
interpreter (has strict scoping rules, no control flow) and “canned”
encodings of returning static data via methods?

e Use case: embedded to support purpose-built software that
can’t embed ACPI-CA (yet is still compatible with a “normal”

AML interpreter)
e Many simpler SoCs don’t really need dynamic behavior
o ..still fully compatible with a regular AML interpreter

 Can have a lighter-weight ACPI OS implementation that only
supports fixed/static data with no bytecode interpretation?

Could Take This One Step Further... @"ﬂ

Be able to compile DTS (textual) or DTB (binary) into this strict
subset of ACPI

e Use case: transitioning embedded hardware/software vendors
to support general purpose (ACPI) OSes

e Compatible with both regular ACPI interpreter and the lighter-
weight one

e Qutside of register / interrupt resources, remaining properties
map to ACPI using Device Properties DSD

Becoming Better at Abstracting.

Allow AML methods to be selectively implemented in native code (e.g. via Platform
Runtime Mechanism, see PRMT under https://uefi.org/acpi)

. Use case:
Provide optimal implementations for performance sensitive parts (or parts that

are hard to model with AML), with better sandboxing guarantees that AML
Get-out-of-jail free card from AML (escape to firmware, ACPI should be about

capable mechanisms, not policy)
e Native |= OS-distributed code. Native == machine code owned by SiP/OEM.

e Standardized PEP replacement (“platform extension plug-ins”)

. No reliance on OS-specific extensions

. Mechanism common across any OS

. Code owned/maintained by SiP/OEM, not OSV
No, you don’t have to use it or allow it in specific solutions. Not all AML needs to
be converted this way, but it’s a way to avoid “why would you want to do that”
kind of conversations around adapting actual hardware to ACPI

https://uefi.org/acpi

Combine Both as Necessary @/”ﬂ

A strict AML subset (static data) + native
methods enable the development of a smaller,
lighter weight and more flexible ACPI
subsystem, while retaining compatibility with
traditional implementations (ACPI-CA)

Call to Action

 |nvestigate what a “reduced static AML” could looks like.
e Opt-in, Code-first with ACPI-CA

 Lighter ACPI-CA alternative only supporting “reduced
static AML”

e DT ->“reduced static AML” converter

* |nvestigate what “native” AML method could look like.
e Opt-in, code-first with ACPI-CA

e Consider different back-ends (PRM? Raw RT? Higher-
privilege calls?)

Questions?

www.uefi.org

Thanks for attending the UEFI 2021 Virtual Plugfest @

For more information on UEFI Forum and UEFI
Specifications, visit http://www.uefi.org

presented by

vmware

www.uefi.org

http://www.uefi.org/

	ACPI-Lite: Exploring a Simplified Mechanism for Abstracting Platforms with ACPI
	Meet the Presenter
	Agenda
	What is ACPI?
	What is ACPI?
	What is Device Tree?
	Challenges with ACPI
	Why Bother Evolving ACPI?
	Abstracting Non-IA Platforms
	Embedded and Safety-Critical
	Becoming Better at Describing.
	Could Take This One Step Further…
	Becoming Better at Abstracting.
	Combine Both as Necessary
	Call to Action
	Questions?
	Slide Number 17

