

Establishing and Protecting a Chain of Trust with UEFI

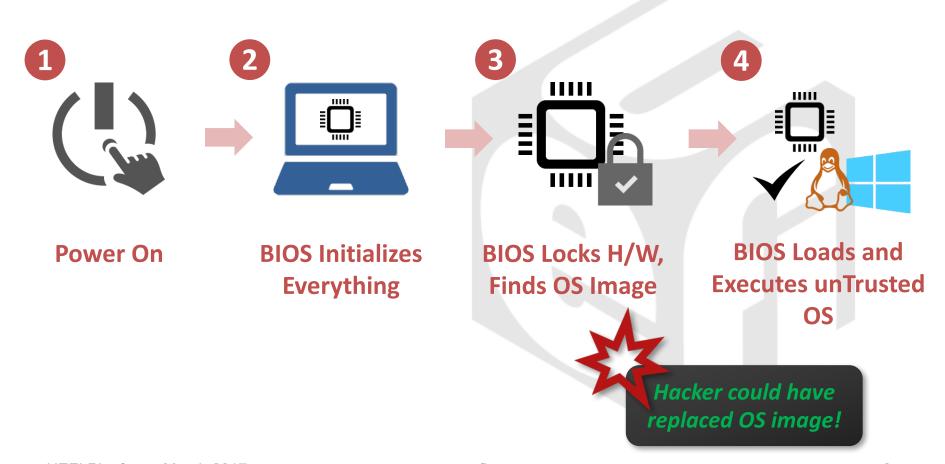
Spring 2017 UEFI Seminar and Plugfest March 27 - 31, 2017
Presented by David Chen (Insyde)

Agenda

- What is the Root of Trust?
- What is Secure Boot?
- What is Measured Boot?
- UEFI and Firmware Updates
- Next Steps

What is the Root of Trust?

Root of Trust is a Security Concept


- Method to trust the system boot path has not been hacked by scheme like root kit
- Hardware and UEFI Firmware maintain Root of Trust until control transfers to OS
 - Hardware initiates Root of Trust:
 - Hardware starts CPU execution and makes some checks
 - Hardware hands off to the trusted UEFI Firmware
 - UEFI Firmware must maintain the Chain of Trust
 - Hardware is the physical Root of Trust
 - UEFI Firmware must protect Root of Trust

UEFI & Root of Trust

- UEFI & hardware provide features to protect the Root of Trust
 - UEFI Specifications have protection features
 - Authenticated variables
 - Secure Boot databases
 - Secure Boot policies
 - Modern hardware has protection features
 - Regions of Read & Write locks
 - SMIs generated by Write attempts
- UEFI Firmware uses these features to protect the Chain of Trust
- Trust is about the method of trust and trust systems

Traditional Boot is Not Secure

What is Secure Boot?

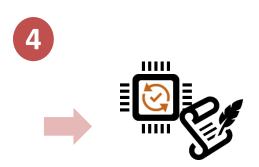
UEFI Image Signing

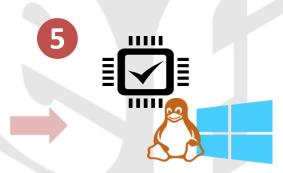
- Signing is creating a hash of the protected content and encrypting that hash with a private key held secure by the software author
 - Hashing always generates the same result from the same input
 - Process has very few collisions
 - Mathematically impossible to create a useful hacked image
- Signature checking is a two-step process
- Hash the code to be validated
- Decrypt the hash stored by signing process using the public key and compare with the value created in signing step
- Certificates controlled by Certificate Authorities or OEMs
- Private Keys should be protected!
 - Control physical and electronic access to Private Keys

UEFI Secure Boot

- UEFI Firmware verifies the signature of external firmware and software before execution
 - Option ROMs (Graphics, Network)
 - OS Bootloader Images (Windows, Linux, Android, custom OSs)
 - Test Firmware (Factory firmware, built-in diagnostics)
 - Boot Applications in embedded devices (Drone Flight app)
- The image must be signed by a trusted signer
- Secure Boot process verifies that only trusted images execute

UEFI Secure Boot & Root of Trust



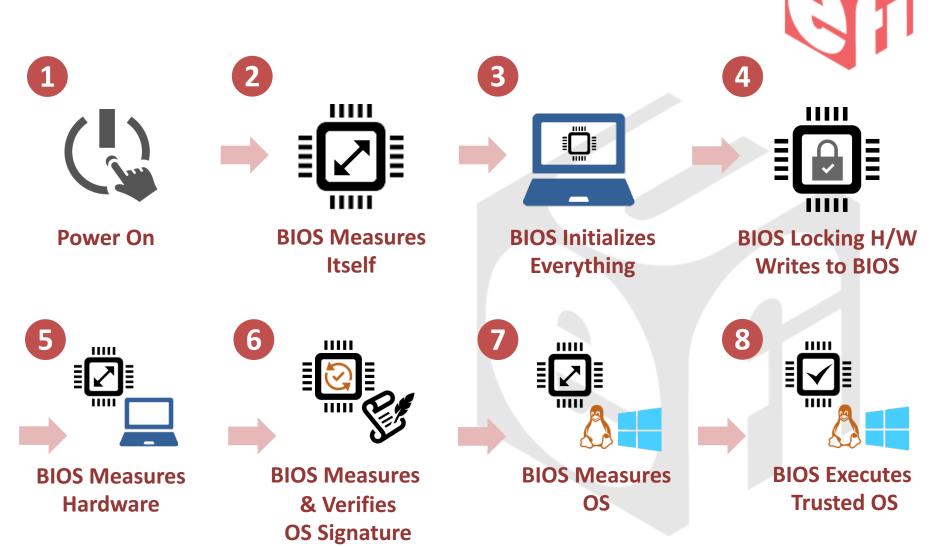

Power On

BIOS Initializes
Everything

BIOS Locks H/W

BIOS Loads & Verifies
OS Bootloader Signature

Boot Loader Verifies OS
Image and Loads
Trusted OS


11

What is Measured Boot?

UEFI Image Measuring

- SPA STA
- For export, TPM Trusted Boot defined by TCG specifications
- For China domestic, the TCM specification is used
- Measuring uses the PCR register to create a kind of hash of important boot stages
- There are several PCR registers defined to contain the hash of particular elements
- OS checks specific PCR values to discover if there were unexpected changes to the boot path elements
- OS must be informed if authorized changes occur, like if the firmware is updated

UEFI & Measurements

UEFI and Firmware Updates

Firmware Updates

- OS or OEM website can provide updates
 - Windows update already supports
 - Can update UEFI Firmware
 - Can update other firmware components
 - Firmware publishes a list of all updatable elements (get table name)
- Update capsule can be stored on HDD or in memory
 - UEFI reboots to launch the chain of trust and root of trust
 - Verifies the signature on the capsule
 - Updates the correct firmware
- Your system should support UEFI FW Update

UEFI & Firmware Updates

System Update Process:

Image Downloaded From Server In

d OS or BIOS Stores
Image on UEFI Sys. Partition

BIOS Reboots into Capsule Update Procedure

BIOS Verifies the Capsule

11111

BIOS Splits the Updates Out

BIOS Updates Firmware

BIOS Reboots into OS

Next Steps

Call to action

- Enable Secure Boot
 - Protect the Root of Trust in OS Boot
- Support TPM 2.0 or TCM
 - Load measurements into TPM or TCM PCRs
- Support UEFI Firmware updates
 - -Provide updates to end users

Thanks for attending the Spring 2017 UEFI Seminar and Plugfest

For more information on the UEFI Forum and UEFI Specifications, visit http://www.uefi.org

presented by

