
Writing and Debugging Writing and Debugging
EBC DriversEBC Drivers

February 27February 27thth 20072007

Michael KinneyMichael Kinney
Principal EngineerPrincipal Engineer

IntelIntel

Copyright Copyright ©© 2007 Intel Corporation2007 Intel Corporation

2

DisclaimerDisclaimer

THIS INFORMATION COTNAINED IN THIS DOCUMENT, INCLUDING ANY TEST THIS INFORMATION COTNAINED IN THIS DOCUMENT, INCLUDING ANY TEST RESULTS ARE PROVIDED RESULTS ARE PROVIDED
"AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF"AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, MERCHANTABILITY,
NONINFRINGEMENT FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANONINFRINGEMENT FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING NTY OTHERWISE ARISING
OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.INFORMATION IN THISOUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.INFORMATION IN THIS DOCUMENT IS PROVIDED IN DOCUMENT IS PROVIDED IN
CONNECTION WITH INTELCONNECTION WITH INTEL®® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIOTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT OR BY THE S DOCUMENT OR BY THE
SALE OF INTEL PRODUCTS. EXCEPT AS PROVIDED IN INTEL'S TERMS AND SALE OF INTEL PRODUCTS. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR CONDITIONS OF SALE FOR
SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS DISCLAIMS ANY EXPRESS
OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCOR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY TS INCLUDING LIABILITY
OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCOR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR HANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPINFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products ERTY RIGHT. Intel products
are not intended for use in medical, life saving, or life sustaiare not intended for use in medical, life saving, or life sustaining applications.ning applications.

Intel retains the right to make changes to its specifications atIntel retains the right to make changes to its specifications at any time, without notice.any time, without notice.

Recipients of this information remain solely responsible for theRecipients of this information remain solely responsible for the design, sale and functionality of their design, sale and functionality of their
products, including any liability arising from product infringemproducts, including any liability arising from product infringement or product warranty.ent or product warranty.

Intel may make changes to specifications, product roadmaps and pIntel may make changes to specifications, product roadmaps and product descriptions at any time, roduct descriptions at any time,
without notice. without notice.

Intel and the Intel logo are trademarks or registered trademarksIntel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in of Intel Corporation or its subsidiaries in
the United States and other countries.the United States and other countries.

*Other names and brands may be claimed as the property of others*Other names and brands may be claimed as the property of others..

Copyright Copyright ©© 2007, Intel Corporation2007, Intel Corporation

3

AgendaAgenda

A Brief History of EBCA Brief History of EBC

EBC OverviewEBC Overview

Designing and Implementing EBC DriversDesigning and Implementing EBC Drivers

Testing and Debugging EBC DriversTesting and Debugging EBC Drivers

EBC Performance GuidelinesEBC Performance Guidelines

SummarySummary

4

Motivation and GoalsMotivation and Goals

Option ROM Cost w/ Multiple ImagesOption ROM Cost w/ Multiple Images
–– For EFI 1.02 this was Itanium and IAFor EFI 1.02 this was Itanium and IA--3232
–– Costs continue to increase as EFI adds CPU architecturesCosts continue to increase as EFI adds CPU architectures

Design GoalsDesign Goals
–– Simple instruction setSimple instruction set

–– Lightweight efficient interpreterLightweight efficient interpreter
–– Share a common call stackShare a common call stack

–– Low overhead on callsLow overhead on calls
–– Share all data structures. Share all data structures.

–– No translations required on EBC No translations required on EBC native native
transitionstransitions

–– No library dependenciesNo library dependencies
–– No C coding restrictionsNo C coding restrictions

A Brief History of EBC

5

OptionsOptions

JAVA and ForthJAVA and Forth
–– Rejected due to large librariesRejected due to large libraries

IAIA--32 Interpreter32 Interpreter
–– Rejected due to the size/complexity of the interpreterRejected due to the size/complexity of the interpreter
–– Requires updates for new IARequires updates for new IA--32 instructions32 instructions

Remote Procedure Call (RPC) like mechanismRemote Procedure Call (RPC) like mechanism
–– PRO: Can handle mixed CPU arch sizesPRO: Can handle mixed CPU arch sizes
–– CON: Does not support all C constructsCON: Does not support all C constructs
–– CON: Function call overhead to transposeCON: Function call overhead to transpose
–– CON: Difficult to share data structuresCON: Difficult to share data structures

–– EFI System Table, Boot Services Table, Protocol InterfacesEFI System Table, Boot Services Table, Protocol Interfaces
–– EFI 1.02 Specification included some supportEFI 1.02 Specification included some support

EBC Instruction Set with Natural AddressingEBC Instruction Set with Natural Addressing
–– PRO: Simple instruction set, no library dependenciesPRO: Simple instruction set, no library dependencies
–– PRO: Share common stack and data structuresPRO: Share common stack and data structures
–– CON: Minor C coding restrictionsCON: Minor C coding restrictions

A Brief History of EBC

6

AgendaAgenda

A Brief History of EBCA Brief History of EBC

EBC OverviewEBC Overview

Designing and Implementing EBC DriversDesigning and Implementing EBC Drivers

Testing and Debugging EBC DriversTesting and Debugging EBC Drivers

EBC Performance GuidelinesEBC Performance Guidelines

SummarySummary

7

typedeftypedef structstruct {{

UINT64 UINT64 BufferLengthBufferLength;;

VOID *Buffer;VOID *Buffer;

UINT16 Checksum;UINT16 Checksum;

} MY_STRUCT;} MY_STRUCT;

All fields are fixed size except INTN, UINTN, and pointersAll fields are fixed size except INTN, UINTN, and pointers

Byte Offset = C + N * Size of pointer in bytesByte Offset = C + N * Size of pointer in bytes
–– BufferLengthBufferLength:: Offset = 0 + 0 * Offset = 0 + 0 * sizeof(VOIDsizeof(VOID *) = 0 or 0*) = 0 or 0

–– Buffer:Buffer: Offset = 8 + 0 * Offset = 8 + 0 * sizeof(VOIDsizeof(VOID *) = 8 or 8*) = 8 or 8

–– ChecksumChecksum Offset = 8 + 1 * Offset = 8 + 1 * sizeof(VOIDsizeof(VOID *) = 12 or 16*) = 12 or 16

Encode both C and N into the instructionEncode both C and N into the instruction
–– CC and N replace traditional offset field for address modesand N replace traditional offset field for address modes

Natural AddressingNatural Addressing

FieldField
BufferLengthBufferLength
BufferBuffer
ChecksumChecksum

00 00
3232--bitbit 6464--bitbit

1212 1616
88 88

Byte OffsetByte Offset

EBC Overview

8

Executing EBC ImagesExecuting EBC Images

EBC Interpreter EBC Interpreter
–– Implemented as a UEFI DriverImplemented as a UEFI Driver
–– Typically stored in system FLASH (~10 KB compressed)Typically stored in system FLASH (~10 KB compressed)

ThunksThunks
–– Native code that transfers control to/from EBC functionsNative code that transfers control to/from EBC functions
–– Translates from native CPU ABI to EBC ABI (stack based)Translates from native CPU ABI to EBC ABI (stack based)
–– Translates from EBC ABI (stack based) to native CPU ABITranslates from EBC ABI (stack based) to native CPU ABI

EBC executables use PE/COFF image formatEBC executables use PE/COFF image format
EBC executables loaded with EFI Boot Service EBC executables loaded with EFI Boot Service LoadImageLoadImage()()
–– LoadImageLoadImage() must support native and EBC images() must support native and EBC images
–– ThunkThunk to image entry point created by to image entry point created by LoadImageLoadImage()()

EBC executables started with EFI Boot Service EBC executables started with EFI Boot Service StartImageStartImage()()
–– Calls entry point Calls entry point thunkthunk

ThunksThunks to exported functions created dynamically to exported functions created dynamically
–– Startup code contains BREAK instructions to create Startup code contains BREAK instructions to create thunksthunks
–– Function pointer references detected by compilerFunction pointer references detected by compiler

–– Assignment or static initialization of protocol functionsAssignment or static initialization of protocol functions

EBC Overview

9

EBC Images in PCI Option ROMsEBC Images in PCI Option ROMs

PCI Bus Driver discovers PCI Option ROMsPCI Bus Driver discovers PCI Option ROMs
PCI Option ROMs support multiple UEFI ImagesPCI Option ROMs support multiple UEFI Images
–– UEFI Images may be compressedUEFI Images may be compressed

UEFI images dispatched by PCI Bus DriverUEFI images dispatched by PCI Bus Driver
–– NonNon--UEFI images, including legacy, are ignoredUEFI images, including legacy, are ignored
–– UEFI Drivers dispatch in the order they appearUEFI Drivers dispatch in the order they appear
–– PCI Bus Driver calls PCI Bus Driver calls LoadImageLoadImage() and () and StartImageStartImage()()

Bus Specific Driver Override ProtocolBus Specific Driver Override Protocol
–– Produced by PCI Bus DriverProduced by PCI Bus Driver
–– Consumed by EFI Boot Service Consumed by EFI Boot Service ConnectControllerConnectController()()
–– Specifies priority order of Driver Binding ProtocolsSpecifies priority order of Driver Binding Protocols

RecommendationsRecommendations
–– Legacy Option ROM image firstLegacy Option ROM image first
–– Native UEFI Drivers nextNative UEFI Drivers next
–– EBC UEFI Drivers lastEBC UEFI Drivers last
–– Compress driver imagesCompress driver images

EBC Overview

10

AgendaAgenda

A Brief History of EBCA Brief History of EBC

EBC OverviewEBC Overview

Designing and Implementing EBC DriversDesigning and Implementing EBC Drivers

Testing and Debugging EBC DriversTesting and Debugging EBC Drivers

EBC Performance GuidelinesEBC Performance Guidelines

SummarySummary

11

When to use EBCWhen to use EBC

AddAdd--in Video Adaptersin Video Adapters

AddAdd--in Disk Controllersin Disk Controllers

Not used for Not used for NICsNICs (UNDI)(UNDI)
––UNDI is runtime which must be native.UNDI is runtime which must be native.

Reduce driver image footprintReduce driver image footprint
––Adapters supporting multiple CPU types Adapters supporting multiple CPU types

–– IAIA--32 and IPF32 and IPF

–– IAIA--32 and X6432 and X64

–– X64 and IPFX64 and IPF

–– IAIA--32, X64, and IPF32, X64, and IPF

Reduce adapter SKUsReduce adapter SKUs

Designing and Implementing EFI Drivers

12

EBC Development ChecklistEBC Development Checklist

Implement and Test Native DriverImplement and Test Native Driver

EBC Development EnvironmentsEBC Development Environments

EBC Target EnvironmentsEBC Target Environments

Driver Design StepsDriver Design Steps

Driver Implementation StepsDriver Implementation Steps

Portability ConsiderationsPortability Considerations

Designing and Implementing EFI Drivers

13

EBC Development EnvironmentsEBC Development Environments

EDK on EDK on TianoCore.orgTianoCore.org
–– https://edk.tianocore.org/files/documents/16/313/Edkhttps://edk.tianocore.org/files/documents/16/313/Edk--DevDev--SnapshotSnapshot--20061228.zip20061228.zip

–– Config.envConfig.env: EFI_GENERATE_INTERMEDIATE_FILE = YES: EFI_GENERATE_INTERMEDIATE_FILE = YES
IntelIntel®® C Compiler for EFI Byte Code Version 1.2 Build C Compiler for EFI Byte Code Version 1.2 Build
2004012320040123
–– Common Flags: Common Flags:

–– /W3 /WX //W3 /WX /FAcsFAcs //FaFa
–– http://www3.intel.com/cd/software/products/asmohttp://www3.intel.com/cd/software/products/asmo--na/eng/compilers/efibc/219678.htmna/eng/compilers/efibc/219678.htm

Microsoft* Linker Version 7.10.3077 and aboveMicrosoft* Linker Version 7.10.3077 and above
–– Common Flags:Common Flags:

–– /MACHINE:EBC /OPT:REF //MACHINE:EBC /OPT:REF /ENTRY:EfiStartENTRY:EfiStart
–– /SUBSYSTEM:EFI_BOOT_SERVICE_DRIVER/SUBSYSTEM:EFI_BOOT_SERVICE_DRIVER
–– EbcLib.libEbcLib.lib

–– Microsoft* Visual Studio .NET 2003Microsoft* Visual Studio .NET 2003
–– Microsoft* Visual Studio 2005Microsoft* Visual Studio 2005
–– Windows* DDK 3790.1830Windows* DDK 3790.1830

Designing and Implementing EFI Drivers

*Other names and brands may be claimed as the property of others*Other names and brands may be claimed as the property of others..

https://edk.tianocore.org/files/documents/16/313/Edk-Dev-Snapshot-20061228.zip
http://www3.intel.com/cd/software/products/asmo-na/eng/compilers/efibc/219678.htm

14

EBC Target EnvironmentsEBC Target Environments

UEFI Compliant PlatformsUEFI Compliant Platforms

EDK EDK –– DUET PlatformDUET Platform
–– Boots UEFI environment on legacy platformBoots UEFI environment on legacy platform

EDK EDK –– NT32 PlatformNT32 Platform
–– UEFI Emulation environment for WindowsUEFI Emulation environment for Windows

–– Not useful for drivers that touch hardwareNot useful for drivers that touch hardware

Designing and Implementing EFI Drivers

15

Driver Implementation StepsDriver Implementation Steps

Create Driver DirectoryCreate Driver Directory

Design Private Context Data StructureDesign Private Context Data Structure

Add Source Files to Driver DirectoryAdd Source Files to Driver Directory

Add .INF File to Driver DirectoryAdd .INF File to Driver Directory

Add .INF file to .DSC file in Build DirectoryAdd .INF file to .DSC file in Build Directory

Run Run nmakenmake to build driverto build driver

Designing and Implementing EFI Drivers

DEMO: Build EBC DEMO: Build EBC SampleDriverSampleDriver
DEMO: Build EBC DEMO: Build EBC HelloWorldHelloWorld

16

Portability ConsiderationsPortability Considerations

Do Not Assume Max Number of ChildrenDo Not Assume Max Number of Children

Do Not Use Fixed Memory AddressesDo Not Use Fixed Memory Addresses

Do Not Use AssemblyDo Not Use Assembly

Do Not Use Floating Point ArithmeticDo Not Use Floating Point Arithmetic

Some Minor EBC Porting ConsiderationsSome Minor EBC Porting Considerations

Bus Drivers Should Support Producing 1 Bus Drivers Should Support Producing 1
Child at a time if possible (improves boot Child at a time if possible (improves boot
performance)performance)

Designing and Implementing EFI Drivers

17

Common EBC Source Porting IssuesCommon EBC Source Porting Issues

EfiMainEfiMain() and () and EfiStartEfiStart() are reserved words() are reserved words

Function DeclarationsFunction Declarations
–– Must match Function Prototype if presentMust match Function Prototype if present

–– All parameter types and return typesAll parameter types and return types

PrePre--Init Data StructuresInit Data Structures
–– Function pointer fields must match declarationFunction pointer fields must match declaration

–– Data fields can not reference Data fields can not reference sizeofsizeof()()

–– EFI_STATUS indirectly references EFI_STATUS indirectly references sizeofsizeof() for EBC() for EBC

case statement can not reference case statement can not reference sizeofsizeof()()
–– EFI_STATUS indirectly references EFI_STATUS indirectly references sizeofsizeof() for EBC() for EBC

Designing and Implementing EFI Drivers

DEMO: PortDemo1 PortDemo2DEMO: PortDemo1 PortDemo2

18

Common EBC Execution IssuesCommon EBC Execution Issues

Incorrect result of op between variable and Incorrect result of op between variable and
immediate dataimmediate data
–– Workaround: Type convert immediate data to UINTNWorkaround: Type convert immediate data to UINTN

Incorrect result of arithmetic calculationsIncorrect result of arithmetic calculations
–– INTN and UINT8INTN and UINT8

–– INTN and UINT16INTN and UINT16

–– INTN and UINT32INTN and UINT32

–– UINTN and INT64UINTN and INT64

–– Workaround: Type convert fixed size to naturalWorkaround: Type convert fixed size to natural

Incorrect CMP instruction generationIncorrect CMP instruction generation
–– Workaround: Not an issue if UEFI base types are usedWorkaround: Not an issue if UEFI base types are used

Designing and Implementing EFI Drivers

DEMO: PortDemo3DEMO: PortDemo3

19

AgendaAgenda

A Brief History of EBCA Brief History of EBC

EBC OverviewEBC Overview

Designing and Implementing EBC DriversDesigning and Implementing EBC Drivers

Testing and Debugging EBC DriversTesting and Debugging EBC Drivers

EBC Performance GuidelinesEBC Performance Guidelines

SummarySummary

20

Testing RecommendationsTesting Recommendations

UEFI Self Certification Tests (UEFI Self Certification Tests (SCTsSCTs))

Test Functions with EFI Shell CommandsTest Functions with EFI Shell Commands

Check for Leaks with EFI Shell CommandsCheck for Leaks with EFI Shell Commands

Install EFI Compliant Operating SystemInstall EFI Compliant Operating System

Boot EFI Compliant Operating SystemBoot EFI Compliant Operating System

Debug Macros Identify Critical FailuresDebug Macros Identify Critical Failures

Use Same Techniques on all CPU TypesUse Same Techniques on all CPU Types
––IAIA--32, Itanium32, Itanium®® Processor Family, x64, EBCProcessor Family, x64, EBC

Testing and Debugging EFI Drivers

21

Debug MethodsDebug Methods

DEBUG()/ASSERT() MacrosDEBUG()/ASSERT() Macros

POST CardPOST Card

UART Serial PortUART Serial Port

VGA DisplayVGA Display

EBC DebuggerEBC Debugger

Testing and Debugging EFI Drivers

22

Debug MacrosDebug Macros

ASSERT (Expression)ASSERT (Expression)
––If Expression is FALSE, then print file name If Expression is FALSE, then print file name

and line number and halt.and line number and halt.

ASSERT_EFI_ERROR (Status)ASSERT_EFI_ERROR (Status)
––If Status is not EFI_SUCCESS, then print file If Status is not EFI_SUCCESS, then print file

name and line number and halt.name and line number and halt.

CR (Record, Type, Field, Signature)CR (Record, Type, Field, Signature)
––ASSERT()sASSERT()s if Data Structure Signature does if Data Structure Signature does

not matchnot match

EFI_BREAKPOINT ()EFI_BREAKPOINT ()
––Generate a CPU break point instructionGenerate a CPU break point instruction

Testing and Debugging EFI Drivers

23

Debug MacrosDebug Macros

DEBUG (DEBUG (ErrorLevelErrorLevel, String, , String, ……))
––Print String if Print String if ErrorLevelErrorLevel is active.is active.

EFI_D_ERROREFI_D_ERROR 0x800000000x80000000

EFI_D_INITEFI_D_INIT 0x000000010x00000001

EFI_D_WARNEFI_D_WARN 0x000000020x00000002

EFI_D_INFOEFI_D_INFO 0x000000400x00000040

EFI_D_BLKIOEFI_D_BLKIO 0x000010000x00001000

EFI_D_UNDIEFI_D_UNDI 0x000100000x00010000

Testing and Debugging EFI Drivers

24

When DEBUG() is not AvailableWhen DEBUG() is not Available

POST Card (I/O 0x80)POST Card (I/O 0x80)

–– PCI Root Bridge I/O ProtocolPCI Root Bridge I/O Protocol

–– PCI I/O ProtocolPCI I/O Protocol

May not work on all platforms
May produce unpredictable results
Must be removed from production drivers

Value = 0x03;
Status = PciIo->Io.Write (

PciIo, // This
EfiPciIoWidthUint8, // Width
EFI_PCI_IO_PASS_THROUGH_BAR, // BAR
0x80, // Offset
1, // Count
&Value // Buffer
);

Testing and Debugging EFI Drivers

25

When DEBUG() is not AvailableWhen DEBUG() is not Available

UART (COM1 I/O 0x3F8UART (COM1 I/O 0x3F8--0x3FF)0x3FF)

UART (Platform Specific MMIO)UART (Platform Specific MMIO)

–– PCI Root Bridge I/O ProtocolPCI Root Bridge I/O Protocol

–– PCI I/O ProtocolPCI I/O Protocol

May not work on all platforms
May produce unpredictable results
Must be removed from production drivers

Hello World

Check Point 1

Check Point 2

Check Point 3

Status = PciIo->PollIo (PciIo, EfiPciIoWidthUint8,
EFI_PCI_IO_PASS_THROUGH_BAR,
0x3FD, 0x20, 0x20, 1000000, &Lsr);

Status = PciIo->Io.Write (PciIo, EfiPciIoWidthUint8,
EFI_PCI_IO_PASS_THROUGH_BAR,
0x3F8, 1, &Data);

Testing and Debugging EFI Drivers

26

When DEBUG() is not AvailableWhen DEBUG() is not Available

VGA (MMIO 0xB8000VGA (MMIO 0xB8000--0xBFFFF)0xBFFFF)

–– PCI Root Bridge I/O ProtocolPCI Root Bridge I/O Protocol

–– PCI I/O ProtocolPCI I/O Protocol

May not work on all platforms
May produce unpredictable results
Must be removed from production drivers

Hello_World

Check_Point_1

Check_Point_2

Check_Point_3

VideoAddress = 0xB8000 + (Row * 80 + Column) * 2;
VideoCharacter = 0x0700 | Character;
Status = PciIo->Mem.Write (PciIo, EfiPciIoWidthUint16,

EFI_PCI_IO_PASS_THROUGH_BAR,
VideoAddress, 1, &VideoCharacter);

Testing and Debugging EFI Drivers

27

EBC Debugger DemoEBC Debugger Demo

Compile with /Compile with /FAcsFAcs and /and /FaFa
–– Generates .COD files with mixed source/Generates .COD files with mixed source/asmasm

Link with /Link with /MAP:mapfileMAP:mapfile
–– Generate .MAP file of functions in EBC driverGenerate .MAP file of functions in EBC driver

Config.envConfig.env
–– EFI_GENERATE_INTERMEDIATE_FILE = YESEFI_GENERATE_INTERMEDIATE_FILE = YES

Testing and Debugging EFI Drivers

DEMO: EBC DebuggerDEMO: EBC Debugger

28

AgendaAgenda

A Brief History of EBCA Brief History of EBC

EBC OverviewEBC Overview

Designing and Implementing EBC DriversDesigning and Implementing EBC Drivers

Testing and Debugging EBC DriversTesting and Debugging EBC Drivers

EBC Performance GuidelinesEBC Performance Guidelines

SummarySummary

29

EBC Performance GuidelinesEBC Performance Guidelines

Do as little work in EBC driver as possibleDo as little work in EBC driver as possible
––Use EFI Boot ServicesUse EFI Boot Services

––Use EFI Runtime ServicesUse EFI Runtime Services

––Use Protocols produced by other driversUse Protocols produced by other drivers

Perform operations at largest size possiblePerform operations at largest size possible

EBC Performance Guidelines

DEMO: DEMO: BadPerfBadPerf and and GoodPerfGoodPerf

30

EBC Performance GuidelinesEBC Performance Guidelines

EFI Boot ServicesEFI Boot Services
–– CopyMemCopyMem(), (), SetMemSetMem()()

PCI I/O ServicesPCI I/O Services
–– PollMemPollMem() and () and PollIoPollIo()()
–– Mem.ReadMem.Read(), (), Mem.WriteMem.Write(), (), Io.ReadIo.Read(), (), Io.WriteIo.Write()()

–– Supports Buffer, FIFO, and Fill operationsSupports Buffer, FIFO, and Fill operations
–– EfiPciIoWidthUintXEfiPciIoWidthUintX, , EfiPciIoWidthFifoUnitXEfiPciIoWidthFifoUnitX, , EfiPciIoWidthFillUintxEfiPciIoWidthFillUintx

–– Pci.ReadPci.Read() and () and Pci.WritePci.Write()()
–– Use buffer to perform many PCI cycles at onceUse buffer to perform many PCI cycles at once

–– CopyMemCopyMem()()
–– Video scroll operations when HW engine no availableVideo scroll operations when HW engine no available

–– Map(), Map(), UnMapUnMap()()
–– Perform double buffering as required in native codePerform double buffering as required in native code

EBC Performance Guidelines

DEMO: DEMO: CirrusLogicCirrusLogic

31

SummarySummary

Use EFI Driver WriterUse EFI Driver Writer’’s Guide for UEFI 2.0s Guide for UEFI 2.0
–– Draft Version 0.94Draft Version 0.94

Implement and Test Native Driver FirstImplement and Test Native Driver First
Be aware of EBC Source Portability IssuesBe aware of EBC Source Portability Issues
–– No assembly or floating point supportNo assembly or floating point support

Call External Services for PerformanceCall External Services for Performance
–– UEFI Boot ServicesUEFI Boot Services
–– UEFI ProtocolsUEFI Protocols

Use EBC Debug Methods and EBC DebuggerUse EBC Debug Methods and EBC Debugger
Validate with Validate with SCTsSCTs, EFI Shell, and OS Install/Boot, EFI Shell, and OS Install/Boot
Follow EBC Option ROM RecommendationsFollow EBC Option ROM Recommendations
–– EBC Images LastEBC Images Last
–– Use UEFI Compression to reduce sizeUse UEFI Compression to reduce size

33

DefinitionsDefinitions

EFI ImageEFI Image
–– Executable Image in a PE32 Image FormatExecutable Image in a PE32 Image Format

EFI DriverEFI Driver
–– EFI Image that Typically Manages Physical Devices EFI Image that Typically Manages Physical Devices
–– Many Types are PossibleMany Types are Possible

HandleHandle
–– Object Containing One or More ProtocolsObject Containing One or More Protocols

ProtocolProtocol
–– Object Containing Functions and DataObject Containing Functions and Data

ControllerController
–– Physical Device that is Managed by an EFI DriverPhysical Device that is Managed by an EFI Driver

EventEvent
–– Object that may be Signaled or Waited UponObject that may be Signaled or Waited Upon
–– Synchronous and Asynchronous NotificationsSynchronous and Asynchronous Notifications

34

UEFI Driver TypesUEFI Driver Types

Designing and Implementing EFI Drivers

EFI Images

Applications

Drivers
Service Drivers

OS Loaders

Initializing Drivers

Root Bridge
Drivers

EFI Driver Model

Device
Drivers

Bus
Drivers

Bus
Drivers

Device
Drivers

Hybrid
Drivers

35

Device DriverDevice Driver

Manages a Controller or Peripheral DeviceManages a Controller or Peripheral Device

Start() Does Not Create Any Child HandlesStart() Does Not Create Any Child Handles

Start() Produces One or More I/O ProtocolsStart() Produces One or More I/O Protocols
––Installed onto the DeviceInstalled onto the Device’’s Controller Handles Controller Handle

Examples:Examples:
PCI Video AdaptersPCI Video Adapters
USB Host ControllersUSB Host Controllers
USB Keyboards / USB MiceUSB Keyboards / USB Mice
PS/2 Keyboards / PS/2 MicePS/2 Keyboards / PS/2 Mice

Drivers
Service Drivers

Initializing Drivers

Root Bridge
Drivers

EFI Driver Model

Device
Drivers

Bus
Drivers

Hybrid
Drivers

Designing and Implementing EFI Drivers

36

Bus DriverBus Driver

Manages and Enumerates a Bus ControllerManages and Enumerates a Bus Controller

Start() Creates One or More Child HandlesStart() Creates One or More Child Handles

Start() Produces Bus Specific I/O ProtocolsStart() Produces Bus Specific I/O Protocols
––Installed onto the BusInstalled onto the Bus’’s Child Handless Child Handles

Examples:Examples:
PCI Network Interface ControllersPCI Network Interface Controllers
Serial UART ControllersSerial UART Controllers

Designing and Implementing EFI Drivers
Drivers

Service Drivers

Initializing Drivers

Root Bridge
Drivers

EFI Driver Model

Device
Drivers

Bus
Drivers

Hybrid
Drivers

37

Hybrid DriverHybrid Driver

Manages and Enumerates a Bus ControllerManages and Enumerates a Bus Controller

Start() Creates One or More Child HandlesStart() Creates One or More Child Handles

Start() Produces Bus Specific I/O ProtocolsStart() Produces Bus Specific I/O Protocols
––Installed onto the BusInstalled onto the Bus’’s Controller Handles Controller Handle

––Installed onto BusInstalled onto Bus’’s Child Handless Child Handles

Examples:Examples:
PCI SCSI Host ControllersPCI SCSI Host Controllers
PCI Fiber Channel ControllersPCI Fiber Channel Controllers

Designing and Implementing EFI Drivers
Drivers

Service Drivers

Initializing Drivers

Root Bridge
Drivers

EFI Driver Model

Device
Drivers

Bus
Drivers

Hybrid
Drivers

38

Driver Design StepsDriver Design Steps

Determine Driver TypeDetermine Driver Type

Identify Consumed I/O ProtocolsIdentify Consumed I/O Protocols

Identify Produced I/O ProtocolsIdentify Produced I/O Protocols

Identify EFI Driver Model ProtocolsIdentify EFI Driver Model Protocols

Identify Additional Driver FeaturesIdentify Additional Driver Features

Identify Target PlatformsIdentify Target Platforms
––IAIA--3232

––Itanium Processor FamilyItanium Processor Family

––EFI Byte Code (EBC)EFI Byte Code (EBC)

Designing and Implementing EFI Drivers

39

Driver Design ChecklistDriver Design Checklist

Driver TypeDriver Type

I/O Protocols ConsumedI/O Protocols Consumed

I/O Protocols ProducedI/O Protocols Produced

Driver BindingDriver Binding
Component NameComponent Name
Driver ConfigurationDriver Configuration
Driver DiagnosticsDriver Diagnostics
UnloadableUnloadable
Exit Boot Services EventExit Boot Services Event
RuntimeRuntime

Set Virtual Address Map EventSet Virtual Address Map EventSet Virtual Address Map Event

GOPGOP SCSI Pass ThruSCSI Pass Thru

Block I/OBlock I/O

PCI I/OPCI I/O
Device PathDevice Path

PCI I/OPCI I/O
Device PathDevice Path

DeviceDevice HybridHybrid

sometimessometimes sometimessometimes

PCI PCI

VideoVideo
PCIPCI

RAIDRAID

Designing and Implementing EFI Drivers

	Writing and Debugging EBC Drivers
	Disclaimer
	Agenda
	Motivation and Goals
	Options
	Agenda
	Natural Addressing
	Executing EBC Images
	EBC Images in PCI Option ROMs
	Agenda
	When to use EBC
	EBC Development Checklist
	EBC Development Environments
	EBC Target Environments
	Driver Implementation Steps
	Portability Considerations
	Common EBC Source Porting Issues
	Common EBC Execution Issues
	Agenda
	Testing Recommendations
	Debug Methods
	Debug Macros
	Debug Macros
	When DEBUG() is not Available
	When DEBUG() is not Available
	When DEBUG() is not Available
	EBC Debugger Demo
	Agenda
	EBC Performance Guidelines
	EBC Performance Guidelines
	Summary
	Definitions
	UEFI Driver Types
	Device Driver
	Bus Driver
	Hybrid Driver
	Driver Design Steps
	Driver Design Checklist

