Writing and Debugging
EBC Drivers

Michael Kinney
Principal Engineer
Intel

February 27™" 2007

Disclaimer

THIS INEFORMATION COTNAINED IN THIS DOCUMENT, INCLUDING ANY TEST RESULTS ARE PROVIDED
“AS IS WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
NONINERINGEMENT FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING
QU OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.INFORMATION IN THIS DOCUMENT IS PROVIDED IN
CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
ONMHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT OR BY THE
SALE OF INTEL PRODUCTS. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR
SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS
OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY
OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INERINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products
are not intended for use in medical, life saving, or life sustaining applications.

Intel retains the right to make changes to its specifications at any time, without notice.

Recipients of this information remain solely responsible for the design, sale and functionality of their
products, including any liability arising from product infringement or product warranty.

Intel may make changes to specifications, product roadmaps and product descriptions at any time,
without notice.

Intel and the Intel Iogo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in
the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2007, Intel Corporation

Agenda

A Brief History of EBC

s EBC Overview

s Designing and Implementing EBC Drivers
s [esting and Debugging EBC Drivers
 EBC Performance Guidelines

s SUMmmary

A Brief History of EBC

Moitivation and Goals

* Option ROM Cost w/ Multiple Images
— For EFI 1.02 this was Itanium and 1A-32
— Costs continue to increase as EFl adds CPU architectures

s Design Goals
— Simple instruction set
— Lightweight efficient interpreter
— Share a common call stack
— Low overhead on calls
— Share all data structures.

— No translations required on EBC <& native
transitions

— No library dependencies
— No C coding restrictions

A Brief History of EBC

Options

JAVA and Forth
— Rejected due to large libraries

IA-32 Interpreter
— Rejected due to the size/complexity of the interpreter
— Requires updates for new IA-32 instructions

Remote Procedure Call (RPC) like mechanism
— PRO: Can handle mixed CPU arch sizes
— CON: Does not support all C constructs
— CON: Function call overhead to transpose
— CON: Difficult to share data structures
— EFI System Table, Boot Services Table, Protocol Interfaces
— EFI 1.02 Specification included some support
EBC Instruction Set with Natural Addressing
— PRO: Simple instruction set, no library dependencies
— PRO: Share common stack and data structures
— CON: Minor C coding restrictions

(intel'

Agenda

* A Brief History of EBC

*EBC Overview

s Designing and Implementing EBC Drivers
s [esting and Debugging EBC Drivers
 EBC Performance Guidelines

s SUMmmary

EBC Overview

Natural Addressing

typedef struct {
UINT64 BufferlLength;

\V/0) i) *Buffer; BufferLength

UINT16 Checksum; Buffer 8 8
5 WMo _STRUCE Checksum 12 16
o All fields are fixed size except INTN, UINTN, and pointers
e Byte Offset = C + N * Size of pointer in bytes

— BufferLength: Offset = O + O * sizeof(VOID *) = 0 or O

— Buffer: Offset = 8 + O * sizeof(VOID *) = 8 or 8

— Checksum Offset = 8 + 1 * sizeof(VOID *) = 12 or 16

* Encode both C and N Iinto the Instruction
— C and N replace traditional offset field for address modes

(intel'

EBC Overview

Executing EBC Images

EBC Interpreter

— [mplemented as a UEFI Driver

— Typically stored in system FLASH (—10 KB compressed)
Thunks

— Native code that transfers control to/from EBC functions
— Translates from native CPU ABI to EBC ABI (stack based)
— Translates from EBC ABI (stack based) to native CPU ABI
EBC executables use PE/COFF image format

EBC executables loaded with EFI Boot Service Loadlmage()
— Loadlmage() must support native and EBC images
— Thunk to iImage entry point created by Loadlmage()
EBC executables started with EFI Boot Service Startlmage()
— Calls entry point thunk
Thunks to exported functions created dynamically
— Startup code contains BREAK instructions to create thunks
— Function pointer references detected by compiler
— Assignment or static initialization of protocol functiens (Intel

8

EBC Overview

EBC Images in PCI Option ROMs

* PCI Bus Driver discovers PCl Option ROMs

o PC| Option ROMs support multiple UEFI Images
— UEFI Images may be compressed

o UEEI images dispatched by PCI Bus Driver
— Nen-UEFI images, including legacy, are ignored
— UEFI Drivers dispatch in the order they appear
— PCI Bus Driver calls Loadlmage() and Startimage()

* Bus Specific Driver Override Protocol
— Produced by PCI Bus Driver
— Consumed by EFI Boot Service ConnectController()
— Specifies priority order of Driver Binding Protocols

e Recommendations
— Legacy Option ROM image first
— Native UEFI Drivers next

_ EBC UEEI Drivers last (intel'

— Compress driver images

Agenda

* A Brief History of EBC

s EBC Overview

s Designing and Implementing EBC Drivers
s [esting and Debugging EBC Drivers

 EBC Performance Guidelines

s SUMmmary

10

Designing and Implementing EFI Drivers

When to use EBC

s Add-In Video Adapters
¢ Add-In Disk Controllers

s Not used for NICs (UNDI)

—UNDI 1s runtime which must be native.
* Reduce driver image footprint
— Adapters supporting multiple CPU types
—A-32 and IPF
— [A-32 and X64
— X64 and IPF
—|A-32, X64, and IPF

 Reduce adapter SKUs (intel.

11

Designing and Implementing EFI Drivers

EBC Development Checklist

s Implement and Test Native Driver
s EBC Development Environments

s EBC Tlarget Environments

* Driver Design Steps

* Driver Implementation Steps

e Portability Considerations

12

Designing and Implementing EFI Drivers

EBC Development Environments

* EDK on TianoCore.org

— Config.env: EFI_GENERATE_INTERMEDIATE_FILE = YES

* Intel® C Compiler for EFlI Byte Code Version 1.2 Build
20040123

— Common Flags:
— /W3 /WX /FAcs /Fa

 Microsoft* Linker Version 7.10.3077 and above
— Common Flags:
— /MACHINE:EBC /OPT:REF /ENTRY :EfiStart
— /SUBSYSTEM:EFI_BOOT SERVICE_ DRIVER
— EbcLib.lib
— Microsoft* Visual Studio .NET 2003
— Microsoft* Visual Studio 2005
— Windows* DDK 3790.1830

*Other names and brands may be claimed as the property of others.

S
L

K]

https://edk.tianocore.org/files/documents/16/313/Edk-Dev-Snapshot-20061228.zip
http://www3.intel.com/cd/software/products/asmo-na/eng/compilers/efibc/219678.htm

Designing and Implementing EFI Drivers

EBC Target Environments

o UEFI Compliant Platforms

s EDK — DUET Platform
— Boots UEFI environment on legacy platform

e EDK — NT32 Platform

— UEFI Emulation environment for Windows
— Not useful for drivers that touch hardware

14

Designing and Implementing EFI Drivers

Priver Implementation Steps

* Create Driver Directory

e [Pesign Private Context Data Structure

s Add Source Files to Driver Directory

e Add .INF File to Driver Directory

e Add .INF file to .DSC file in Build Directory
e Run nmake to build driver

DEMO: Build EBC SampleDriver
DEMO: Build EBC HelloeWorld

15

Designing and Implementing EFI Drivers

Pertability Considerations

o Do Not Assume Max Number of Children
¢ Do Not Use Fixed Memory Addresses

e Do Not Use Assembly

e Do Not Use Floating Point Arithmetic

e Some Minor EBC Porting Considerations

* Bus Drivers Should Support Producing 1
Child at a time If possible (improves boot
performance)

(intel'

16

Designing and Implementing EFI Drivers

Common EBC Source Porting Issues

o EmMain() and EfiStart() are reserved words
¢ FEunction Declarations
— Must match Function Prototype if present
— All parameter types and return types
e Pre-Init Data Structures
— Function pointer fields must match declaration

— Data fields can not reference sizeof()
— EFI_STATUS indirectly references sizeof() for EBC

e case statement can not reference sizeof()
— EFI_STATUS indirectly references sizeof() for EBC

DEMO: PortDemol PortDemo?2

(intel'

17

Designing and Implementing EFI Drivers

Common EBC Execution Issues

* lncorrect result of op between variable and
Immediate data
— Workaround: Type convert immediate data to UINTN

s |ncorrect result of arithmetic calculations
— INTN and UINTS
— INTN and UINT16
— INTN and UINT32

— UINTN and INT64
— Workaround: Type convert fixed size to natural

e Incorrect CMP instruction generation
— Workaround: Not an issue iff UEFI base types are used

DEMO: PortDemo3 (intel'

18

Agenda

* A Brief History of EBC

s EBC Overview

s Designing and Implementing EBC Drivers
s festing and Debugging EBC Drivers
 EBC Performance Guidelines

s SUMmmary

19

Testing and Debugging EFI Drivers
lesting Recommendations

s UEEI Self Certification Tests (SCTs)

s lest Functions with EFl Shell Commands
s Check for Leaks with EFl Shell Commands
o [Install EFI Compliant Operating System

* Boot EFIl Compliant Operating System

* Debug Macros ldentify Critical Failures

e Use Same Techniques on all CPU Types
—1A-32, Itanium® Processor Family, x64, EBC

(intel'

20

Testing and Debugging EFI Drivers

Pebug Methods

s DEBUG()/ASSERT() Macros
* POST Card

s UART Serial Port

*\/GA Display

e EBC Debugger

21

Testing and Debugging EFI Drivers
Debug Macros

" S ASSERT (Expression)

— | Expression I1s FALSE, then print file name
and line number and halt.

e ASSERT EFI ERROR (Status)

— | Status Is not EFI_SUCCESS, then print file
name and line number and halt.

*CR (Record, Type, Fireld, Signature)

—ASSERT()s If Data Structure Signature does
not match

e EFI_BREAKPOINT ()

—Generate a CPU break point instruction

(intel'

22

Testing and Debugging EFI Drivers
4 Debug Macros

fE%?DEBUG (ErrorLevel, String, ..)

—Print String If ErrorLevel Is active.

*EFI_D ERROR 0x80000000
*EFI D INIT 0x00000001
*EFI_D WARN 0x00000002
*EFI_D_INFO 0x00000040
*EFI_D BLKIO 0x00001000
*EFI_D UNDI 0x00010000

23

Testing and Debugging EFI Drivers

When DEBUG() 1s not Avallable

e POST Card (1/0 0x80)
— PCI Root Bridge 1/0 Protocol
— PCI 1/0 Protocol

Value = 0x03;

Status = Pcilo->lo.Write (
Pcilo, // This
EfiPciloWidthuint8, // Width
EFI_PCI_10_PASS THROUGH_BAR, // BAR

0x80, // Offset
1, // Count
&Value // Buffer

);

May not work on all platforms
May produce unpredictable results '
Must be removed from production drivers (intel

24

Testing and Debugging EFI Drivers

S When DEBUG() 1s not Available

Hello World e UART (COM1 I/0 Ox3F8-0x3FF)
Check Point 1 e UART (Platform Specific MMIO)
— PCI Root Bridge 1/0 Protocol
— PCI 1/0 Protocol

Status = Pcilo->Polllo (Pcilo, EfiPciloWidthUints,
EF1_PCI_10_PASS THROUGH_ BAR,

Ox3FD, 0x20, 0x20, 1000000, &Lsr);
Status = Pcilo->lo.Write (Pcilo, EfiPciloWidthUints8,
EF1_PCI1_10_PASS THROUGH_BAR,
Ox3F8, 1, &Data);

Check Point 2
Check Point 3

May not work on all platforms
May produce unpredictable results

Must be removed from production drivers (intel'

25

Testing and Debugging EFI Drivers

When DEBUG() i1s not Avallable

Hello World e VGA (MMIO OxB800O0O-0xBFFFF)
Check_Point_1 — PCI Root Bridge 1/0 Protocol

Check_Point_2 — PCI 1/0O Protocol
Check Point_ 3

VideoAddress = 0xB8000 + (Row * 80 + Column) * 2;

VideoCharacter = 0x0700 | Character;

Status = Pcilo->Mem.Write (Pcilo, EfiPciloWidthuintlé6,
EF1_PCI_10_PASS THROUGH_BAR,
VideoAddress, 1, &VideoCharacter);

May not work on all platforms
May produce unpredictable results

Must be removed from production drivers (intel'

26

Testing and Debugging EFI Drivers

EBC Debugger Demo

s Compile with /FAcs and /Fa
— Generates .COD files with mixed source/asm

o Link with /MAP:mapfile
— Generate .MAP file of functions in EBC driver
e Config.env
— EFI_ GENERATE INTERMEDIATE FILE = YES

DEMO: EBC Debugger

27

Agenda

* A Brief History of EBC

s EBC Overview

s Designing and Implementing EBC Drivers
s [esting and Debugging EBC Drivers

s EBC Performance Guidelines

s SUMmmary

28

EBC Performance Guidelines

EBC Performance Guidelines

s Do as little work in EBC driver as possible
—Use EFI Boot Services
—Use EFI Runtime Services
—Use Protocols produced by other drivers

e Perform operations at largest size possible

DEMO: BadPerf and GoodPerf

29

EBC Performance Guidelines

EBC Performance Guidelines

* EFI Boot Services
— CopyMem(), SetMem()

 PCI 1I/O Services
— PoliMem() and Polllo()
— Mem.Read(), Mem.Write(), lo.Read(), lo.Write()
— Supports Buffer, FIFO, and Fill operations
— EfiPciloWidthUintX, EfiPciloWidthFifoUnitX, EfiPciloWidthFillUintx
— Pci.Read() and Pci.Write()
— Use buffer to perform many PCI cycles at once
— CopyMem()
— Video scroll operations when HW engine no available
— Map(), UnMap()
— Perform double buffering as required in native code

DEMO: CirruslLogic

S
L

30

summary

o Use EFI Driver Writer’s Guide for UEFI 2.0
— Draft Version 0.94

o [mplement and Test Native Driver First

* Be aware of EBC Source Portability Issues
— No assembly or floating point support

e Calll External Services for Performance
— UEFI Boot Services
— UEFI Protocols

 Use EBC Debug Methods and EBC Debugger
e Validate with SCTs, EFI Shell, and OS Install/Boot

e Follow EBC Option ROM Recommendations
— EBC Images Last
— Use UEFI Compression to reduce size

(intel'

31

Definitions

* EEI Image
— Executable Image in a PE32 Image Format

s EEI Driver

— EFI Image that Typically Manages Physical Devices
— Many Types are Possible

s Handle
— Object Containing One or More Protocols

* Protocol
— Object Containing Functions and Data

e Controller
— Physical Device that is Managed by an EFI Driver

e Fvent

— Object that may be Signaled or Waited Upon
— Synchronous and Asynchronous Notifications

33

S
L

Designing and Implementing EFI Drivers

UEEI Driver Types

EFIl Images

Drivers

EFI Driver Model

Initializing Drivers

Bus Hybrid vice °
Drive. Drivers vers 5

Root Bridge
Drivers

Applications

34

Designing and Implementing EFI Drivers

Drivers

PDevice Driver

EFI Driver Mode

Bus Hybrid Device
Drivers Drivers Drivers

s Mlanages a Controller or Peripheral Device
e Start() Does Not Create Any Child Handles

o Start() Produces One or More I/0O Protocols
— |nstalled onto the Device’s Controller Handle

Examples:
PCI Video Adapters
USB Host Controllers
USB Keyboards / USB Mice
PS/2 Keyboards / PS/2 Mice

35

Designing and Implementing EFI Drivers
- D
BUS Driver

EFI Driver Mode
Initializing Drivers
Root Bridge
Drivers

Bus Hybrid Device
Drivers Drivers Drivers

s Mamnages and Enumerates a Bus Controller
o Start() Creates One or More Child Handles

o Start() Produces Bus Specific 1/0 Protocols
— |Installed onto the Bus’s Child Handles

Examples:

PCIl Network Interface Controllers
Serial UART Controllers

36

Designing and Implementing EFI Drivers

Drivers

Hybrid Driver EF Driver Mode
ver
Drivers

Bus Hybrid Device
Drivers Drivers Drivers

s Mamnages and Enumerates a Bus Controller
o Start() Creates One or More Child Handles

o Start() Produces Bus Specific 1/0 Protocols
— |nstalled onto the Bus’s Controller Handle
—Installed onto Bus’s Child Handles

Examples:
PCI| SCSI Host Controllers
PCIl Fiber Channel Controllers

37

Designing and Implementing EFI Drivers

Priver Design Steps

s Determine Driver Type

s [dentify Consumed I/0 Protocols

s [dentify Produced I/0O Protocols

o |[dentify EFI Driver Model Protocols
 [dentify Additional Driver Features

o [dentify Target Platforms
—A-32
— Itanium Processor Family
—EFI Byte Code (EBC)

38

Designing and Implementing EFI Drivers

* Driver Design Checklist

i3
'r

PCI PCI
Video RAID
Driver Type Device Hybrid

/0 Protocols Consumed PC_I 170 PC_I 170
Device Path Device Path
SCSI Pass Thru
/0 Protocols Produced GOP e 175
Driver Binding v v
Component Name v v
Driver Configuration v
Driver Diagnostics v v
Unloadable v v
Exit Boot Services Event sometimes sometimes
Runtime
Set Virtual Address Map Event

39

	Writing and Debugging EBC Drivers
	Disclaimer
	Agenda
	Motivation and Goals
	Options
	Agenda
	Natural Addressing
	Executing EBC Images
	EBC Images in PCI Option ROMs
	Agenda
	When to use EBC
	EBC Development Checklist
	EBC Development Environments
	EBC Target Environments
	Driver Implementation Steps
	Portability Considerations
	Common EBC Source Porting Issues
	Common EBC Execution Issues
	Agenda
	Testing Recommendations
	Debug Methods
	Debug Macros
	Debug Macros
	When DEBUG() is not Available
	When DEBUG() is not Available
	When DEBUG() is not Available
	EBC Debugger Demo
	Agenda
	EBC Performance Guidelines
	EBC Performance Guidelines
	Summary
	Definitions
	UEFI Driver Types
	Device Driver
	Bus Driver
	Hybrid Driver
	Driver Design Steps
	Driver Design Checklist

