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A Brief History of EBC

Moitivation and Goals

* Option ROM Cost w/ Multiple Images
— For EFI 1.02 this was Itanium and 1A-32
— Costs continue to increase as EFl adds CPU architectures

s Design Goals
— Simple instruction set
— Lightweight efficient interpreter
— Share a common call stack
— Low overhead on calls
— Share all data structures.

— No translations required on EBC <& native
transitions

— No library dependencies
— No C coding restrictions



A Brief History of EBC

Options

JAVA and Forth
— Rejected due to large libraries

IA-32 Interpreter
— Rejected due to the size/complexity of the interpreter
— Requires updates for new IA-32 instructions

Remote Procedure Call (RPC) like mechanism
— PRO: Can handle mixed CPU arch sizes
— CON: Does not support all C constructs
— CON: Function call overhead to transpose
— CON: Difficult to share data structures
— EFI System Table, Boot Services Table, Protocol Interfaces
— EFI 1.02 Specification included some support
EBC Instruction Set with Natural Addressing
— PRO: Simple instruction set, no library dependencies
— PRO: Share common stack and data structures
— CON: Minor C coding restrictions

(intel'
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EBC Overview

Natural Addressing

typedef struct {
UINT64 BufferlLength;

\V/0) i) *Buffer; BufferLength

UINT16 Checksum; Buffer 8 8
5 WMo _STRUCE Checksum 12 16
o All fields are fixed size except INTN, UINTN, and pointers
e Byte Offset = C + N * Size of pointer in bytes

— BufferLength: Offset = O + O * sizeof(VOID *) = 0 or O

— Buffer: Offset = 8 + O * sizeof(VOID *) = 8 or 8

— Checksum Offset = 8 + 1 * sizeof(VOID *) = 12 or 16

* Encode both C and N Iinto the Instruction
— C and N replace traditional offset field for address modes

(intel'



EBC Overview

Executing EBC Images

EBC Interpreter

— [mplemented as a UEFI Driver

— Typically stored in system FLASH (—10 KB compressed)
Thunks

— Native code that transfers control to/from EBC functions
— Translates from native CPU ABI to EBC ABI (stack based)
— Translates from EBC ABI (stack based) to native CPU ABI
EBC executables use PE/COFF image format

EBC executables loaded with EFI Boot Service Loadlmage()
— Loadlmage() must support native and EBC images
— Thunk to iImage entry point created by Loadlmage()
EBC executables started with EFI Boot Service Startlmage()
— Calls entry point thunk
Thunks to exported functions created dynamically
— Startup code contains BREAK instructions to create thunks
— Function pointer references detected by compiler
— Assignment or static initialization of protocol functiens (Intel
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EBC Overview

EBC Images in PCI Option ROMs

* PCI Bus Driver discovers PCl Option ROMs

o PC| Option ROMs support multiple UEFI Images
— UEFI Images may be compressed

o UEEI images dispatched by PCI Bus Driver
— Nen-UEFI images, including legacy, are ignored
— UEFI Drivers dispatch in the order they appear
— PCI Bus Driver calls Loadlmage() and Startimage()

* Bus Specific Driver Override Protocol
— Produced by PCI Bus Driver
— Consumed by EFI Boot Service ConnectController()
— Specifies priority order of Driver Binding Protocols

e Recommendations
— Legacy Option ROM image first
— Native UEFI Drivers next

_ EBC UEEI Drivers last (intel'

— Compress driver images
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Designing and Implementing EFI Drivers

When to use EBC

s Add-In Video Adapters
¢ Add-In Disk Controllers

s Not used for NICs (UNDI)

—UNDI 1s runtime which must be native.
* Reduce driver image footprint
— Adapters supporting multiple CPU types
—A-32 and IPF
— [A-32 and X64
— X64 and IPF
—|A-32, X64, and IPF

 Reduce adapter SKUs (intel.
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Designing and Implementing EFI Drivers

EBC Development Checklist

s Implement and Test Native Driver
s EBC Development Environments

s EBC Tlarget Environments

* Driver Design Steps

* Driver Implementation Steps

e Portability Considerations

12



Designing and Implementing EFI Drivers

EBC Development Environments

* EDK on TianoCore.org

— Config.env: EFI_GENERATE_INTERMEDIATE_FILE = YES

* Intel® C Compiler for EFlI Byte Code Version 1.2 Build
20040123

— Common Flags:
— /W3 /WX /FAcs /Fa

 Microsoft* Linker Version 7.10.3077 and above
— Common Flags:
— /MACHINE:EBC /OPT:REF /ENTRY :EfiStart
— /SUBSYSTEM:EFI_BOOT SERVICE_ DRIVER
— EbcLib.lib
— Microsoft* Visual Studio .NET 2003
— Microsoft* Visual Studio 2005
— Windows* DDK 3790.1830

*Other names and brands may be claimed as the property of others.

S
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https://edk.tianocore.org/files/documents/16/313/Edk-Dev-Snapshot-20061228.zip
http://www3.intel.com/cd/software/products/asmo-na/eng/compilers/efibc/219678.htm

Designing and Implementing EFI Drivers

EBC Target Environments

o UEFI Compliant Platforms

s EDK — DUET Platform
— Boots UEFI environment on legacy platform

e EDK — NT32 Platform

— UEFI Emulation environment for Windows
— Not useful for drivers that touch hardware

14



Designing and Implementing EFI Drivers

Priver Implementation Steps

* Create Driver Directory

e [Pesign Private Context Data Structure

s Add Source Files to Driver Directory

e Add .INF File to Driver Directory

e Add .INF file to .DSC file in Build Directory
e Run nmake to build driver

DEMO: Build EBC SampleDriver
DEMO: Build EBC HelloeWorld

15



Designing and Implementing EFI Drivers

Pertability Considerations

o Do Not Assume Max Number of Children
¢ Do Not Use Fixed Memory Addresses

e Do Not Use Assembly

e Do Not Use Floating Point Arithmetic

e Some Minor EBC Porting Considerations

* Bus Drivers Should Support Producing 1
Child at a time If possible (improves boot
performance)

(intel'
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Designing and Implementing EFI Drivers

Common EBC Source Porting Issues

o EmMain() and EfiStart() are reserved words
¢ FEunction Declarations
— Must match Function Prototype if present
— All parameter types and return types
e Pre-Init Data Structures
— Function pointer fields must match declaration

— Data fields can not reference sizeof()
— EFI_STATUS indirectly references sizeof() for EBC

e case statement can not reference sizeof()
— EFI_STATUS indirectly references sizeof() for EBC

DEMO: PortDemol PortDemo?2

(intel'
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Designing and Implementing EFI Drivers

Common EBC Execution Issues

*  lncorrect result of op between variable and
Immediate data
—  Workaround: Type convert immediate data to UINTN

s |ncorrect result of arithmetic calculations
— INTN and UINTS
— INTN and UINT16
— INTN and UINT32

— UINTN and INT64
— Workaround: Type convert fixed size to natural

e Incorrect CMP instruction generation
— Workaround: Not an issue iff UEFI base types are used

DEMO: PortDemo3 (intel'
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Testing and Debugging EFI Drivers
lesting Recommendations

s UEEI Self Certification Tests (SCTs)

s lest Functions with EFl Shell Commands
s Check for Leaks with EFl Shell Commands
o [Install EFI Compliant Operating System

* Boot EFIl Compliant Operating System

* Debug Macros ldentify Critical Failures

e Use Same Techniques on all CPU Types
—1A-32, Itanium® Processor Family, x64, EBC

(intel'
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Testing and Debugging EFI Drivers

Pebug Methods

s DEBUG()/ASSERT() Macros
* POST Card

s UART Serial Port

*\/GA Display

e EBC Debugger

21



Testing and Debugging EFI Drivers
Debug Macros

" S ASSERT (Expression)

— | Expression I1s FALSE, then print file name
and line number and halt.

e ASSERT EFI ERROR (Status)

— | Status Is not EFI_SUCCESS, then print file
name and line number and halt.

*CR (Record, Type, Fireld, Signature)

—ASSERT()s If Data Structure Signature does
not match

e EFI_BREAKPOINT ()

—Generate a CPU break point instruction

(intel'
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Testing and Debugging EFI Drivers
4 Debug Macros

fE%?DEBUG (ErrorLevel, String, ..)

—Print String If ErrorLevel Is active.

*EFI_D ERROR 0x80000000
*EFI D INIT 0x00000001
*EFI_D WARN 0x00000002
*EFI_D_INFO 0x00000040
*EFI_D BLKIO 0x00001000
*EFI_D UNDI 0x00010000

23



Testing and Debugging EFI Drivers

When DEBUG() 1s not Avallable

e POST Card (1/0 0x80)
— PCI Root Bridge 1/0 Protocol
— PCI 1/0 Protocol

Value = 0x03;

Status = Pcilo->lo.Write (
Pcilo, // This
EfiPciloWidthuint8, // Width
EFI_PCI_10_PASS THROUGH_BAR, // BAR

0x80, // Offset
1, // Count
&Value // Buffer

);

May not work on all platforms
May produce unpredictable results '
Must be removed from production drivers (intel

24



Testing and Debugging EFI Drivers

S When DEBUG() 1s not Available

Hello World e UART (COM1 I/0 Ox3F8-0x3FF)
Check Point 1 e UART (Platform Specific MMIO)
— PCI Root Bridge 1/0 Protocol
— PCI 1/0 Protocol

Status = Pcilo->Polllo (Pcilo, EfiPciloWidthUints,
EF1_PCI_10_PASS THROUGH_ BAR,

Ox3FD, 0x20, 0x20, 1000000, &Lsr);
Status = Pcilo->lo.Write (Pcilo, EfiPciloWidthUints8,
EF1_PCI1_10_PASS THROUGH_BAR,
Ox3F8, 1, &Data);

Check Point 2
Check Point 3

May not work on all platforms
May produce unpredictable results

Must be removed from production drivers (intel'
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Testing and Debugging EFI Drivers

When DEBUG() i1s not Avallable

Hello World e VGA (MMIO OxB800O0O-0xBFFFF)
Check_Point_1 — PCI Root Bridge 1/0 Protocol

Check_Point_2 — PCI 1/0O Protocol
Check Point_ 3

VideoAddress = 0xB8000 + (Row * 80 + Column) * 2;

VideoCharacter = 0x0700 | Character;

Status = Pcilo->Mem.Write (Pcilo, EfiPciloWidthuintlé6,
EF1_PCI_10_PASS THROUGH_BAR,
VideoAddress, 1, &VideoCharacter);

May not work on all platforms
May produce unpredictable results

Must be removed from production drivers (intel'
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Testing and Debugging EFI Drivers

EBC Debugger Demo

s Compile with /FAcs and /Fa
— Generates .COD files with mixed source/asm

o Link with /MAP:mapfile
— Generate .MAP file of functions in EBC driver
e Config.env
— EFI_ GENERATE INTERMEDIATE FILE = YES

DEMO: EBC Debugger

27
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EBC Performance Guidelines

EBC Performance Guidelines

s Do as little work in EBC driver as possible
—Use EFI Boot Services
—Use EFI Runtime Services
—Use Protocols produced by other drivers

e Perform operations at largest size possible

DEMO: BadPerf and GoodPerf

29



EBC Performance Guidelines

EBC Performance Guidelines

* EFI Boot Services
— CopyMem(), SetMem()

 PCI 1I/O Services
— PoliMem() and Polllo()
— Mem.Read(), Mem.Write(), lo.Read(), lo.Write()
— Supports Buffer, FIFO, and Fill operations
— EfiPciloWidthUintX, EfiPciloWidthFifoUnitX, EfiPciloWidthFillUintx
— Pci.Read() and Pci.Write()
— Use buffer to perform many PCI cycles at once
— CopyMem()
— Video scroll operations when HW engine no available
— Map(), UnMap()
— Perform double buffering as required in native code

DEMO: CirruslLogic

S
L
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summary

o Use EFI Driver Writer’s Guide for UEFI 2.0
— Draft Version 0.94

o [mplement and Test Native Driver First

* Be aware of EBC Source Portability Issues
— No assembly or floating point support

e Calll External Services for Performance
— UEFI Boot Services
— UEFI Protocols

 Use EBC Debug Methods and EBC Debugger
e Validate with SCTs, EFI Shell, and OS Install/Boot

e Follow EBC Option ROM Recommendations
— EBC Images Last
— Use UEFI Compression to reduce size

(intel'
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Definitions

* EEI Image
— Executable Image in a PE32 Image Format

s EEI Driver

— EFI Image that Typically Manages Physical Devices
— Many Types are Possible

s Handle
— Object Containing One or More Protocols

* Protocol
— Object Containing Functions and Data

e Controller
— Physical Device that is Managed by an EFI Driver

e Fvent

— Object that may be Signaled or Waited Upon
— Synchronous and Asynchronous Notifications

33
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Designing and Implementing EFI Drivers

UEEI Driver Types

EFIl Images

Drivers

EFI Driver Model

Initializing Drivers

Bus Hybrid vice °
Drive.  Drivers vers 5

Root Bridge
Drivers

Applications

34



Designing and Implementing EFI Drivers

Drivers

PDevice Driver

EFI Driver Mode

Bus Hybrid Device
Drivers Drivers Drivers

s Mlanages a Controller or Peripheral Device
e Start() Does Not Create Any Child Handles

o Start() Produces One or More I/0O Protocols
— |nstalled onto the Device’s Controller Handle

Examples:
PCI Video Adapters
USB Host Controllers
USB Keyboards / USB Mice
PS/2 Keyboards / PS/2 Mice

35



Designing and Implementing EFI Drivers
- D
BUS Driver

EFI Driver Mode
Initializing Drivers
Root Bridge
Drivers

Bus Hybrid Device
Drivers Drivers Drivers

s Mamnages and Enumerates a Bus Controller
o Start() Creates One or More Child Handles

o Start() Produces Bus Specific 1/0 Protocols
— |Installed onto the Bus’s Child Handles

Examples:

PCIl Network Interface Controllers
Serial UART Controllers

36



Designing and Implementing EFI Drivers

Drivers

Hybrid Driver EF Driver Mode
ver
Drivers

Bus Hybrid Device
Drivers Drivers Drivers

s Mamnages and Enumerates a Bus Controller
o Start() Creates One or More Child Handles

o Start() Produces Bus Specific 1/0 Protocols
— |nstalled onto the Bus’s Controller Handle
—Installed onto Bus’s Child Handles

Examples:
PCI| SCSI Host Controllers
PCIl Fiber Channel Controllers

37



Designing and Implementing EFI Drivers

Priver Design Steps

s Determine Driver Type

s [dentify Consumed I/0 Protocols

s [dentify Produced I/0O Protocols

o |[dentify EFI Driver Model Protocols
 [dentify Additional Driver Features

o [dentify Target Platforms
—A-32
— Itanium Processor Family
—EFI Byte Code (EBC)

38



Designing and Implementing EFI Drivers

* Driver Design Checklist

i3
'r

PCI PCI
Video RAID
Driver Type Device Hybrid

/0 Protocols Consumed PC_I 170 PC_I 170
Device Path Device Path
SCSI Pass Thru
/0 Protocols Produced GOP e 175
Driver Binding v v
Component Name v v
Driver Configuration v
Driver Diagnostics v v
Unloadable v v
Exit Boot Services Event sometimes sometimes
Runtime
Set Virtual Address Map Event

39
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