EDK Il Remote Debug Support

Laurie Jarlstrom
Intel Corporation

*Other trademarks and brands are the property of their respective owners

THIS INFORMATION COTNAINED IN THIS DOCUMENT, INCLUDING ANY TEST RESULTS ARE PROVIDED
"AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
NONINFRINGEMENT FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE
ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.INFORMATION IN THIS DOCUMENT IS
PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT OR BY THE SALE OF INTEL PRODUCTS. EXCEPT AS PROVIDED IN INTEL'S TERMS AND
CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND
INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR
PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life
sustaining applications.

Intel retains the right to make changes to its specifications at any time, without notice.

Recipients of this information remain solely responsible for the design, sale and functionality of their
products, including any liability arising from product infringement or product warranty.

Intel may make changes to specifications, product roadmaps and product descriptions at any time,
without notice.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries
in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2008-2010, Intel Corporation

*Other trademarks and brands are the property of their respective owners

Agenda

® Overview

® General architecture

® Changes to the target firmware
® Debug Features

® Distribution

® Known Limitation

® Usage Scenario

*Other trademarks and brands are the property of their respective owners

Overview

® Provide ability to support both GDB* and WinDbg* with key
debug features to trace the EDK Il code flow and check status
(variable, registers, etc).

® Supported features
—Use WinDbg to debug target machine which is running EDK Il code
—Use GDB to debug target machine which is running EDK Il code
—Use UART with Null modem cable connected to Host
—Starting as early as in late SEC phase

—Basic assembly level debug commands already supported in GDB
(tried in early SEC/PEI)

*Other trademarks and brands are the property of their respective owners

General Architecture (Windows¥™)

Host Machine Target Machine
(running Windows)

Debug
Exdi COM Agent
interface
by Microsoft
WinDBG
generated nterposer
by Visual COM Interrupt
Studio on interface Handler
Windows
pDBand| Debug Debug
Source | Channel Channel
UART

Interrupt

*Other trademarks and brands are the property of their respective owners

General Architecture (Linux)

Host Machine

(1 Running Windows and
1 running Linux, connected
through network)

(Optional) GUI tool (ddd)

Run on a Linux box

GDB GDB Serial
Protocol over
TCP/IP
Debug file GDB Server
generated
by MinGW
/e Python COM
Linux interface
Debug file Debug
and Source Channel
Run the red UART

parts on
Windows box

Target Machine

Debug
Agent

Normal

Debug Code

Interrupt Flow
Handler

Debug
Channel

Interrupt

*Other trademarks and brands are the property of their respective owners

New Debug lerary Agent

[Pre |: :
:| Verifier [, : SMM Handler -
\9 CPU - SMM Init E...: ..
: qzx n Inlt D : E d - n u
. = . . . xpose : : : :
o \;, Chipset |« 1 ice, Platforms= SAAbsent :
. . Init . Bus, or Interface PP : =
: \, < : | Service - () : ; :
= : ' : Driver : | TransientOS | - : .
: : . . : | Environment | i : .
: : . : Boot . CD : | OS-Present
: __Manager : App . :
: . : : :) : :
@DDE ISntrlr_13|c : Final OS : Final OS : I -
: SETVICES : | Boot Loader [t | Environment [+ (SN :
. : =security - : : -)
Security Pre EFI Driver Boot Dev Transient Run Time After
(SEC) ([Initialization Execution Select System Load (RT) Life
(PEI) Environment (BDS) (TSL) (AL)
(DXE)
Power on —> [.. Platform initialization..] =———[.... OS boot....] >Shutdown

*New Debug Library agent installed at different phases

*Other trademarks and brands are the property of their respective owners

Changes to the Target Firmware

®Goal to minimize changes needed for target firmware

®*Add a call to a new library class called the DebugAgentLib at a
few key points in the boot flow. One in SEC, one in DXE Main,
and another in SMM CPU Module.

*A NULL implementation of the DebugAgentLib will be checked
Into open source so all modules can build with debug feature
disabled

*Other trademarks and brands are the property of their respective owners

Updates to DSC

Libraries SourcelLevelDebugPkg Lib Instance

[LibraryClasess] General
PeCoffExtraActionLib PeCoffExtraActionLibDebug.inf

[LibraryClasses.lA32] PEI
DebugAgentLib SecPeiDebugAgentLib.inf

[LibraryClasses.X64] DXE
DebugAgentLib DxeDebugAgentLib.inf

[LibraryClasses.X64.DXE_SMM_DRIVER] SMM
DebugAgentLib SmmDebugAgentLib.inf

*Other trademarks and brands are the property of their respective owners

Updates to FDF

[FV.FVMAIN]
DXE Phase modules

Comment out module for

TerminalDxe.inf
F£INF MdeModulePkg/Universal/Console/TerminalDxe/TerminalDxe.inf

*Other trademarks and brands are the property of their respective owners

Debug Features

® Insert CpuBreakpoint() in source code, to start debugging a module
® Source level debug

®Go/Halt/Go till

® Set breakpoint (<=3 for code running on flash)

® Step into, step over

® View and edit local variables and global variables (suggest use
Disable Optimization for the compiler option)

® Call-stack (in PEI, PE image should be used to see complete call
stack)

® View disassembly, view and edit general purpose register values

*Other trademarks and brands are the property of their respective owners

Distribution

® Plan to provide single package to contain:
—DebugAgentLib implementations
—DebugPortLib implementations
—binaries of the tools that run on the host
—Documentation

—License for Intel Tiano Direct Licenses only as non-distributable
end point code.

>For Direct Licenses to use for Development purposes only

*Other trademarks and brands are the property of their respective owners

Known Limitations

Do not debug debugger itself

MSR read/write access not supported yet

Do not support Multi Processors

Do not support pure 32-bit platform

Not all WinDbg commands validated yet

Cannot set breakpoint before a module get loaded

Do not use 2 debuggers at the same time

Do not support 16-bit debugging

Do not support IPF

A small set of code is not debug-able, like early SEC, early SMM
May have bugs or unsupported features (usually corner cases)

*Other trademarks and brands are the property of their respective owners

Usage Scenario WINnDBG

® Environment

—WinDbg 6.11.1.404 -Microsoft website
http://msdl.microsoft.com/download/symbols/debuqggers/dbg x86 6.11.1.
404 .msi

—Windows XP (development environment)

— or, GDB on Linux
® Configuration

— Host: Configure the DebugPortUart.ini for COM port used

— Target: Configure target to use right COM (through PCD), ensure the COM is
not used by other module/feature (for example, remove Terminal driver), use
non-NULL DebugAgent library instance get used

> COM 1 is the Default on Target
> Simply print ASCII though that COM is allowed

*Other trademarks and brands are the property of their respective owners

http://msdl.microsoft.com/download/symbols/debuggers/dbg_x86_6.11.1.404.msi�
http://msdl.microsoft.com/download/symbols/debuggers/dbg_x86_6.11.1.404.msi�

Mame =
ICyDebugPortUart

Starting Debug S
[Flinstall.bat

Launu:h_Gu:II:u.I:uat
Launu:h_'u'-s'indl:ug.l:uat

® | aunch

—Launch WinDbg Batch file script
—Then power on the target (within 40s)

— If target CPU mode switch (like 32->64 bit when PEIl -> DXE), close and
relaunch WinDbg

® Optional Configure the Symbol path (Alt. “F”, then “S”) to the
Workspace the Build was invoked

h:-[eXDI "exdiclsid={66C102B6-D4F6-4F8E-84CC-BOYB02D364EAY - WinDbg:6.11.0001.404 XB6
File Edit Wiew Debug Mindow Help

SymbOI Flle Path S|P EREEHED PG |0 DPENEEREEO0BE[E] A

A] —
H Symbaol path:
G [FReL -] ok |
E Cancel
Z . 794 2010 (GHT-8)). ptz
c Help |
k.4 BE-3E 36 363
* - *
h = -
* [Reload h=s. *
* BE 3 3E 363

Executable =earch path i=:
eXDI Device Kernel Version 0 TP Frees =86 compatible

Hachine Hame:

Primary image ba=e = 0x00000000 Loaded module list = 0x00000000
Sy=ztem Uptime: not available

Tnlknown HALT REEASOH O

fffffa3e bEOOOOOOOO b Tw\rd eax. [

*Other trademarks and brands are the property of their respective owners

WinDBG Command window

OCOmm and Window must be |:1:I5=-[66E1}Brﬁ-F-4FBE-B¢|(C-BIHBI]IZDEE4EA}’-Winl}hg:ﬁ.ll. DO
. File Edit View Debug Window Help
floating A R =

e After PEI-IPL will need to exit e e g e O N

FET PE'T UME BOTHTERRCD -1 -

the WIinDBG and then Re- EM Command - eXDI "exdi:clsid={66C10256-D4F6-4FBE-84CC-BO9BO2DIGAEA} -
. . Debugger data list address 1= HULL
|nVOke_ DO NOT exit the Connected to eXDI Device 0 x8F compatible target at (Fri
Symbol =s=arch path is: *%% Tnwvalid **x
[1] 7 1 3636 36 3636 36 3636 36 36 3636 36 3636 36 36 3636 36 3636 36 36 3536 35 3636 36 36 3636 36 3636 36 36 3636 3 36 36 36 36 3636 3 3636 36 36 336 3 M
Debugportuart WIndOW' * Synbol loading may be unreliable without a =vmbol =esarc
- | * Uze .gymiixz to have the debugger choos=ze a svmnbol path.
‘Bottom WlndOW a”OWS * After setting vour svmbol path, uze .reload to refresh
636 3636 36 33636 36 363636 33636 36 33636 33636 36 363636 33636 36 363636 33636 36 336 33636 36 336 333636 HN
Executable search path i=:
Commands to be entered eill Device Kernel Version 0 TP Frees =86 compatible
Machine Hame:
>.r6b00t Primary image base = 0xz00000000 Loaded module list = 0=x0C
_ 1 Sy=ztem Uptime: not awvailable
»Smmentrybreak=1 or O Unknown HALT REASON 0
oy fEff£63=e BEOOOOOOOD monr eax. [
>g - Go kd> 5
fffff63=e bEOOOOOOOD mor eax, [
- kd: g
>B[(:IDIE] [<bpS>] f££d1917 23ch and ecE. ebx
: kd: .sympath .. .sympath+ F: ~EISL-~BUILD~LAKEPORTI64PEG-DEBT
Clear/dlsable/enable Symbol search path i=: .. sympath+ F ~E9-L~BUILD~LAKEPORTE
- Ezpanded Symbol search path i=: . . =ymnpath+ {:~rS-1l1-build~
breakpoint(s) VARNING: Inaccessible path: '. . sympath+ F:\R9\L~EUILD-LAik

>Q - CIUIt |4|
>»? — Command list

*Other trademarks and brands are the property of their respective owners

Debug Commands (WInDBG) GUI

‘I_[eXDI 'exdiclsid={ 66C102B6-D4AF6-4FBE-BACC-BO9B02D364EA} - WinDbg:6.11.0001.404 XB6

File Edit Wew Debug Window Help

2|l R ARG BTG N DEEEEEOEEE 5] A S

‘:_[eXDI "exdiclsid={ 66C102B6-D4F6-4FBE-BACC-BOYB02D36

.GO . an’ uF5n or File Edit EiewlMﬂindnw Help

R @ | & B2 Eﬂhdld Fs
——— Go Unhandled Exception
.Halt - COﬂthl Ereak g Gu:uuandledExceptiEn
INT3Z2 Restart Cirl +5hift+F5
eStep Into “F8” or A v
. ’ /1:” . Ere_ak Ctrl+Break
*Step Over “F10” or i e
. Ny BLiZ% Sten Quer FIFI
.Step OUt “Shlft Fll Or {r]_-l itlenpb?-gursnr EZT:;FIEIIWF?

Source Mode
Resolve Ungualified Symbals

®Run to Cursor *}

Event Filters...
Maodules, ..

Kernel Connection 3

*Other trademarks and brands are the property of their respective owners

Source Code View

®“C” source code can be viewed after a “Control Break”

B

‘:-[eXDI "exdiclsid={66C102B6-DAF6-AFBE-BACC-BOOB02D364EAY - WinDbg:-6.11.0001.404 XB&
File Edit View Debug Window Help

Z|rERERED BT 0 DR EEREEOEE|[E 0] A,

E\r9\\mdepkg\ibrary\ peihoblib\ hoblib.c
EFI_PEI_HOB POINTERS Hob:

ASSERT (HobStart = NULL):

Hob . Raw = (UINTS #) HobStart:

A

< Parsze the HOE list until end of list or matching tvpe i= found.
A

while {(|EHD OF HOB LIST (Hobi) {

1f {Hob.Header—-:HobType == Type) {
return Hob Kaw:

T
Hob. Raw = GET_NEXT_HOBE (Hob):
b
return HULL:
W
Feturns the first instance of a HOB tvpe among the whole HOB list.

Thi= function searches the first instance of a HOE type among the whole HOB li=t.
If there doe= not exi=t s=uch HOB tvpe in the HOBE li=t, it will return HULL.

If the pointer to the HOB li=t i= HUOLL, then ASSEET().
@param Tvpe The HCOE type to return.

@return The next instance of a HOE twpe from the starting HOB.

*Other trademarks and brands are the property of their respective owners

Setting a Break point ol

] ‘i—-[XD “exdiclsid={ 66C102B6-DAF6-4FBE-BACC-BOST" ““£A}" - WinDbge6.1 1.0001.404 XB6
_ Eile Edit View Debug Window Help

2| ERERRRHED BTG O DFREEEEOEE|E L A S

i =\ r9\ l\mdemodulepkg core\ pei\image\image.c hE

T

ey

o

<« Print debug message: Loading PEIM at 0xl12345678 EntrvPoint=0x12345688 Driver . efi
R
if (Machine !'= EFI_THAGE MACHINE TAcd) {

DEBUG ((EFI_D _IWFD | EFI_D_LOAD, "Loading PEIM at 0xXllp EntrvyPoint=0xX1lp ", (¥OID =)
F el== {
o

re—. <« For IPF Image. the real entrv point should be print.

DEBUG ((EFI_D_INFO | EFI_D_LOAD, "Loading PEIM at Ox%1lp EntryPoint=0x%11lp *,(VOID

A

<« Print Module Hame by Pelmagse PLE file name.
o

A=zciiString = PeCoffloaderGetPdbPointer (PeizDatal:

if (A=ciiString != HULL) {

for (Index = (IHNT32) A=sciiStrlen (A=ciiString) — 1; Index = 0; Index —) {

if (AsciiString[Index] == '"~~'"1 {
breal::

b

h

if (Index = 0)
for {(Indexl = 0; AsciiString[Index + 1 + Indexl] != '.'; Inde=xl ++) {

AzciiBuffer [Indexl] = A=s=ciiString[Index + 1 + Indexl]:

As=ciiBuffer [Indexl] = 'O
TERTN: ¢ (FRT THEM | RET T TAAT "%a =fdi' AsediPaffaih

*Other trademarks and brands are the property of their respective owners

Suggested Breakpoints

® Debugging the Boot Phases
— Security (SEC) Phase
— Pre-EFI (PEI) Phase
— DXE Phase
— BDS Phase
— SMM

*Other trademarks and brands are the property of their respective owners

Security Phase (SEC)

®Function
—Authenticate BIOS
—Switch to 32-bit flat mode
—BSP selection
—Initialize PEI temporary memory
—Transfer control to PEI Core
epPlatform specific functions
—AP waking stub
—Early microcode update
—Common ratio programming
—Collect BIST (Built-in Self Test)
eExecuted in place from flash

*\Written in assembly (16-bit & 32-bit)

*Other trademarks and brands are the property of their respective owners

Debugging Done In The SEC phase
®Checking if reset vector is accessible
®Stepping though the instructions singly

®*Make certain the CPU is able to fetch the instructions from the
flash and validates that the address is being decoded correctly

®Check for setting up of Cache-As-RAM (CAR)
®Switch to protected mode
®Execution of microcode patch

®Use .reboot command to reset the target

*Other trademarks and brands are the property of their respective owners

PEI Phase

{ [|
PEI

®Function
—Discover and initialize some RAM that won’t be reconfigured
—Describes location of FV(s) containing DXE Core & Architecture
Protocols
—Describes other fixed, platform specific resources that only PEI can
know about

eComponents

—Binaries: PEIl Core and PEI Modules (PEIMS)
>PEIMs are modules scheduled by the PEI core in the early phase of
platform initialization. PEIMs are typically executed in place before system
memory is available. Only hardware breakpoints can be set on PEIMS
because the flash is read only and doesn’t allow ITP to patch instructions
in the flash.
—Interfaces: Methods of Inter-PEIM communication
>Core set of services (PeiServices), PEIM to PEIM Interfaces (PPls), and
simple Notifies (no timer in PEI)

*Other trademarks and brands are the property of their respective owners

Debugging Done In ey
The PEI Phase L -

PEI

®Check for proper execution and order of all the PEI drivers

eExecution of basic chipset initialization
—GMCH/Uncore, ICH/PCH, SIO device initialization

®Execution of memory init instruction
e Availability of memory, and complete flash accessibility

®Execution of recovery driver if the recovery jumper is
selected, and execution of recovery path if recovery is
detected

®Detection of DXE IPL PEIM which In turn detects and
launches the DXE core

*Other trademarks and brands are the property of their respective owners

PEIl Phase - Trace each PEIM

—Location
>File: MdeModulePkg\Core\Pei\Dispatcher\Dispatcher.c
>Function: PeiDispatcher()
>For Loop

®Trace all the PEIMs being dispatched load the Dispatcher.c file in PEIMAIM
module

e Scroll down to PeiDispatcher() function and set a break point at the main
dispatch loop before each PEIM Entry

// Call the PEIM entry point
CpuBreakpoint() ;
PeimEntryPoint(PeimFileHandle, (const EFI_PEI _SERVICES **) &Private->Ps);

®The next time you hit this breakpoint, you can step into this function to
trace each PEIMs being dispatched.

*Other trademarks and brands are the property of their respective owners

DXE Phase

DXE

®\Works after system memory has been discovered and
Initialized

®DXE drivers are typically stored in flash in compressed form
and must be decompressed into memory before execution

®Both hardware and software breakpoints can be set in DXE
drivers

*Other trademarks and brands are the property of their respective owners

Debugging Done In The DXE 3
Phase m

®Cyclic dependency check

DXE

®Tracing any assert that may have been caused during DXE
execution

®Debugging of individual DXE driver
®Check for failure to load architectural protocols
®Check to see if BDS entry has been called

*Other trademarks and brands are the property of their respective owners

Break point at DXE-Phase Entry Point

®Check if PElI-phase reaches DXE-phase

—Location
>File: MdeModulePkg\Core\Pei\PeiMain\PeiMain.c
>Function: PeiCore()
>Call: Dxelpl-=Entry()

// Enter Dxelpl to load Dxe core.
//
CpuBreakpoint() ;
Status = TempPtr.Dxelpl->Entry (
TempPtr.Dxelpl,
&PrivateData.Ps,
PrivateData.HobList
);return EF1_NOT_ FOUND;

*Other trademarks and brands are the property of their respective owners

Break point at DXE-Phase Entry Point

— part 2

eVerify the address of DXE Core Entry point after IPL

from PEI
®Check if we pass behind HandOffToDxeCore call

®|_ocation
—File:MdeModulePkg\Core\DxelplPeim\DxelLoad.c
—Function: DxeLoadCore (inside the call Dxelpl-=Entry())

—Call: HandOffToDxeCore()
>Argument: DxeCoreEntryPoint
// Transfer control to the DXE Core
// The hand off state is simply a pointer to the HOB list
//
CpuBreakpoint() ;
HandOffToDxeCore (DxeCoreEntryPoint, HobList);

//
// 1Tt we get here, then the DXE Core returned. This 1s an error

*Other trademarks and brands are the property of their respective owners

DXE — Trace each Driver Load

®Check if control has been transferred to loaded image

entry points
—The system breaks at this point successfully every time a new
DXE driver is loaded. Step into this function to trace individual
drivers.

—Location
>File: MdeModulePkg\Core\Dxe\Image\lmage.c
>Function: CoreStartimage
>Call: Image-=EntryPoint()

Image->Started = TRUE;
CpuBreakpoint() ;
Image->Status=Image->EntryPoint (ImageHandle, Image->Info.SystemTable);

*Other trademarks and brands are the property of their respective owners

BDS Phase

BDS

®Centralize Policy and User Interface
—Lets you customize to different look and feels

®*Make a central repository for platform boot policy

e Allow for the ability to boot with minimal driver initialization
and user interaction

*®Allow for implementation of setup menu

e®Allow for ability to store information using NVRAM variables.

*Other trademarks and brands are the property of their respective owners

Debugging Done In The BDS Phaseé

BDS

®Ensuring detection of console devices (both input and output)

®Ensuring complete enumeration of all the devices preset (for

which the BIOS has the drivers)
®Detection of Boot policy

®| oading of BIOS front page

*Other trademarks and brands are the property of their respective owners

Debugging BDS-Phase Entry Pont
®Check if you reached and entered the BDS-phase

—Location:
>File: MdeModulePkg\Core\Dxe\DxeMain DxeMain.c
>Function: DxeMain
>Call: gBds-=Entry (gBds);

CpuBreakpoint() ;
gBds->Entry (gBds);

// BDS should never return
ASSERT (FALSE);
CpuDeadLoop ();

*Other trademarks and brands are the property of their respective owners

System Management Mode

®Registration vehicle for dispatching drivers in response to
System Management Interrupts (SMl)

®Dispatch of drivers in System Management Mode (SMM) will
not be able to use core protocol services

*SMM handlers will be logically prevented from accessing
conventional memory resources

*SmmLib includes a subset of the DXE core services, such as
memory allocation, device 1/0 protocol, and others

*Other trademarks and brands are the property of their respective owners

Debugging Done In The System
Management Mode

*SMM drivers are a special type of DXE drivers. As with other
DXE drivers, SMM drivers are scheduled by the DXE core, but
SMM drivers perform the following steps in the entry point:

—Locate the SmmBase protocol.

—Invoke SmmBase.InSmm() to see whether the driver is in SMM. If
yes, proceed to other initialization relevant to this driver, like what
a DXE driver does, and return EFI_SUCCESS. If the driver is not in
SMM, proceed with the following steps.

—Invoke SmmBase.Register() to fork another copy of the SMM
driver in SMRAM. At this point, two copies of this driver exist: one
in BS memory and the other in SMRAM.

—The copy of the driver in BS memory returns an error code to
make DXE core release the memory occupied by this copy.

*SMM drivers are not as straightforward as DXE drivers,
because the processor automatically cleans up debug registers
when it enters SMM. Set smmentrybreak=1

*Other trademarks and brands are the property of their respective owners

Debugging Done In The System
Management Mode

SmmBase->InSmm (SmmBase, &InSmm);
If ('InSmm) {
// Retrieve the Device Path Protocol from the DeviceHandle that this driver was loaded from
Status = mBS->HandleProtocol (Loadedlmage->DeviceHandle,
&gEfiDevicePathProtocolGuid,
(VOID*)&ImageDevicePath);
ASSERT_EFI_ERROR (Status);
// Build the full device path to the currently executing image
CompleteFilePath = SmmAppendDevicePath (ImageDevicePath, Loadedlmage->FilePath);
// Load the image in memory to SMRAM; it will automatically generate the SMI.

Status = SmmBase->Register (SmmBase, CompleteFilePath, NULL, O, &Handle, FALSE);
ASSERT_EFI_ERROR (Status);

return Status;

s
Status = mBS->HandleProtocol (ImageHandle, &gEfiLoadedlmageProtocolGuid, (VOID
**S&Loa eglmagg); (g g 9 (

ASSERT_EFI_ERROR (Status);

LoadedImage->Unload = _DriverUnloadHandler;
// Skipped...

return Status;

*Other trademarks and brands are the property of their respective owners

Debugging Done In The System
Management Mode For Platform
Initialization (P1l) Spec
SMM Initialization - Load the SMM Core image into SMRAM and
execute the SMM Core from SMRAM

—Location:
>File: MdeModulePkg\Core\PiSmm~Core\PiSmmilpl.c

>Function: SmmIplEntry
>Call: ExecuteSmmCoreFromSmram

// Load SMM Core into SMRAM and execute it from SMRAM
//

Status = ExecuteSmmCoreFromSmram (mCurrentSmramRange, gSmmCorePrivate);

*Other trademarks and brands are the property of their respective owners

Backup

*Other trademarks and brands are the property of their respective owners

	EDK II Remote Debug Support
	Disclaimer
	Agenda
	Overview
	General Architecture (Windows*)
	General Architecture (Linux)
	New Debug Library Agent
	Changes to the Target Firmware
	Updates to DSC
	Updates to FDF
	Debug Features
	Distribution
	Known Limitations
	Usage Scenario WinDBG
	Starting Debug
	WinDBG Command window
	Debug Commands (WinDBG) GUI
	Source Code View
	Setting a Break point
	Suggested Breakpoints
	Security Phase (SEC)
	Debugging Done In The SEC phase
	PEI Phase
	Debugging Done In �The PEI Phase
	PEI Phase - Trace each PEIM
	DXE Phase
	Debugging Done In The DXE Phase
	Break point at DXE-Phase Entry Point
	Break point at DXE-Phase Entry Point – part 2
	DXE – Trace each Driver Load
	BDS Phase
	Debugging Done In The BDS Phase
	Debugging BDS-Phase Entry Pont
	System Management Mode
	Debugging Done In The System Management Mode
	Debugging Done In The System Management Mode
	Debugging Done In The System Management Mode For Platform Initialization (PI) Spec
	Backup

