presented by

8

intel

Firmware Configuration — Past, Present,
and Future

UEFI Fall 2023 Developers Conference & Plugfest
October 9-12, 2023
Presented by
Vincent Zimmer (Intel Corporation)
Gahan Saraiya (Intel Corporation)
Christine Chen (Intel Corporation)

www.uefi.org

Catch Up From the Last 2 Days

e U-E-F-l versus YOU-FEE?

e Agent of SHIELD provides not help
https://www.youtube.com/watch?v= 9Ic95nx|(

WMM (0:8)

e And if YOU-FEE, then
ACK-PEE?

E (1 40) www.uefi.org

https://www.youtube.com/watch?v=9lc95nXKWMM
https://www.youtube.com/watch?v=9lc95nXKWMM
https://www.youtube.com/watch?v=A0seUVAC09E
https://www.youtube.com/watch?v=A0seUVAC09E

‘Speaker’ Bios

www.uefi.org

Vincent Zimmer

Vincent Zimmer Is a Senior Principal
Engineer with Intel. He joined Intel in 1997
and has been working on EFI / Framework /
UEFI / Pl along with touching TCG and
other stds groups since 1999. He lives In
the Seattle area and can be reached via
various paths —

vincent.zimmer@intel.com or 425-881-4874
or https://twitter.com/vincentzimmer?lang=en
or https://www.linkedin.com/in/vzimmer or

www.uefi.org

mailto:vincent.zimmer@intel.com
https://twitter.com/vincentzimmer?lang=en
https://www.linkedin.com/in/vzimmer

Gahan Saraiya

Gahan is a skilled Platform Lead at Intel,
working within the Software and
Advanced Technology Group. With over
four years of experience, he has been
dedicated to the development and
Implementation of firmware configurations
that support the expansion of automation
Infrastructure. Gahan's contributions have
consistently made a positive and lasting
Impact on the organization during his
tenure.

Know more about Gahan

www.uefi.org

https://gahan9.github.io/

Christine Chen

Christine iIs the software development
engineer at Intel, has been working on the
Edk2 BaseTools related development and
support works since 2020. She has
designed and developed BaseTools
FMMT python tool, and has been
participated Iin BaseTools Iincremental
Build project, BaseTools C tool python
convertion work. She is focus on BIOS
configuration enhancement in BaseTools
build system currently.

www.uefi.org

Agenda

Introduction
Evolution
Present Practice

Next Generation of Firmware
Configuration

Questions

www.uefi.org

8

Introduction

www.uefi.org

Introduction

e Growing requirements of various
application demands different firmware
flows

e Drilled down to classify with conditional
flow

www.uefi.org

Evolution

www.uefi.org

Evolution

e Boot Flow Control with Firmware
Configuration

 HIl Implementation

www.uefi.org

Boot Flow Control with Firmware

Configuration
e EFI Variables act as control variable for
firmware boot flow process
e Fulfills need of simpler to complex boot
flow context, i.e.
—boot priority ordering
—security configuration
—overclocking of device

8

www.uefi.org

HIl Implementation

g i

® O O
HIl establishes Infrastructure between Control variable (EFI Variable) mapped
external entity to firmware configuration through various component of Hll

vfr/hfr — customized syntactical language to construct
user interface

uni — string representation of Identifier mapped in
vfr/hfr

Header file *.h — variable structure and GUID

Source file *.c — HIl Protocols

www.uefi.org

Present Practice

www.uefi.org

Present Practice

e Non-Recommended Practices

e Runtime population of form
representation

e Tools and Tech

www.uefi.org

Present Practice — Non-Recommended
Practices

e Action callbacks associated with form
representation

8

www.uefi.org

Present Practice - Tools and Tech

TOOL/TECH REFERENCE

8

RedFish DMTF’s Redfish®

UFFAF UEFI Firmware Foundational Automation
Framework

USF YAML vaml boot configuration

FDT Flattened device tree

FSP UPD FSP UPD

DFCI Mu DFCI

https://www.dmtf.org/standards/redfish
https://github.com/intel/xml-cli
https://github.com/intel/xml-cli
https://universalscalablefirmware.github.io/documentation/7_yaml_boot_configuration.html
https://www.devicetree.org/
https://intel.com/fsp
https://microsoft.github.io/mu/dyn/mu_feature_dfci/DfciPkg/Docs/Dfci_Feature/

Present Practice - Tools and Tech

Tool
RedFish

UFFAF

USF YAML

FDT

FSP UPD

User Visible
Data Format

json

Xml,json

yam|

dts

Bsf, yaml

End-User

Firmware Programming
Implementation Language

Edk2 Advanced Feature Python
Package

Intel Advanced Feature Python
Package

BaseTools Python

Device tree compiler C
(DTC)

Configuration editor Python

U F FAF UEFI Firmware Foundational Automation Framework

UFFAF Execution Flow

Runtime

© .

» il Lsgjuies. t01 Trigger Software

i (Action Trigger Physical Memory SMI

< Address J

%)

O
s g Memory Map of
Q GE) Request-Response
s Cycle

9 A 4

©

2 Interrupt

£

- |

A_4
% s Read and : Process Request and
o2 . Is valid .
= Validate Request write response status to

s Request .
< Buffer Physical memory

www.uefi.org

https://github.com/intel/xml-cli

U F FAF UEFI Firmware Foundational Automation Framework

UFFAF Execution Flow
Offline
Source Compilation ; '
= ST— (compilation of form T”grgiregﬁg ftt’g:'d 1 Firmware
@ representation files with P Py Binary
. source compilation]
VirCompiler) R R e mnm
% Driver script to parse
f; IFR record
o intermediate files
k.
g IFR intermediate
@ record (* i)
e
= 3
2 ~ 1 New
on Trigger onfiguration Mo irmware
g Action Tri) Confi tion Modify Fi
§ J / Binary

www.uefi.org

https://github.com/intel/xml-cli

YAML and USF

A Universal Scalable Firmware (USF)

Revision History
Notices and Disclaimers

1. Universal Scalable Firmware (USF)
Specification

2. Universal Payload

3. Platform Orchestration Layer (POL)

4. Runtime
5. Security
6. Debug

7. YAML Format Boot Configuration
7.1. Introduction
7.2. Target Audience

7.3. Configuration Description
(YAML) Explained

7.4. File Layout

7.5. Variable

7.6. Template

7.7. Configs

7.8. Delta (DLT) File Explained

7.9. DLT file rules

7.10. Configuration Process
8. Scalable FSP

9. Bootloader Payloads

7. YAML Format Boot Confiquration — Universal Scalable Firmware (USF) documentation

https://universalscalablefirmware.github.io/documentation/7 yaml|_boot_configuration.html A 0y 9y A {:3]

i
)

A » 7. YAML Format Boot Configuration

7. YAML Format Boot Configuration

7.1. Introduction

This document describes the format of the YAML based boot setting file used to specify features, settings, and tool display information to
the Intel Firmware Support Package (FSP) and tools like Config Editor. It further describes the structure and content of YAML format files,
which can simplify the configuration of a static binary and during dynamic boot process.

7.2. Target Audience

This document is intended for person creating and using firmware images. It is most likely of interest if a developer needs to create
customized feature and expose binary settings for delivery to customers, or that a new SOC device is being enabled.

7.3. Configuration Description (YAML) Explained

The declarations required to build the configuration data blobs and the header files are provided in a configuration description file. This file
uses the YAML syntax.

YAML (https:/yaml.org/) is a data serialization language designed to be human-friendly and work well with modern programming
languages. A quick syntax reference can be found here - https:/yaml.org/refcard.html

Configuration YAML files will be processed by configuration tools like GenCfgData, CfgDataTool, CfgDataStitch in order to generate the
configuration header files and binary blobs.

The main platform configuration file is specified in CfgDataDef.yaml. Please note that you may find many YAML files. However, only
CfgDataDef.yaml is the primary file used for the platform configuration, and other sub YAML files will be included by the primary YAML file
to provide component specific configuration.

An example configuration file in YAML syntax is provided in Figure 15 below.

Wwww.ueftl.org

https://universalscalablefirmware.github.io/documentation/7_yaml_boot_configuration.html

USF YAM Lvaml boot configuration

lllllllll
Process

USF YAML focus on the VFR
and StructurePCD BIOS
Configuration method,
expect to unified these
source files into YAML type.
Based on this expectation,
the evolution process in
shown as left diagram. For
the final flow, all the Bios

p— Configuration related
- = Information are from
+ E YAML file. YamICompiler tool
- and YamIToVPD tool will be
e e ol used to generate the binary
o which will be built into the
BIOS Image and be

www.uefi.org consumed during boot time. &5

https://universalscalablefirmware.github.io/documentation/7_yaml_boot_configuration.html
https://github.com/tianocore/edk2-basetools/pull/109

YAML Config Tool for Intel® FSP UPD

YAML UPD Editor Features:

e Read FSP binary information

e Allow patching any BIOS/IFWI image
containing FSP UPDs

e Read YAML config format while Boot
Setting File (BSF) backward
compatible

e Bit format FSP support instead of
bytes

* Modifying BSF parameters and export
loadable delta files

e FSP 1.x and 2.x format backward
compatible

e Search function

System FW -
Bootloader

4)

Intel® FSP

FSP-T E

FSP-M E

§ Config Editor
File

* FSP-T Settings
Uncore (Pre-Mem)
Platform Specific

= CPU (Pre-Mem)

Memory Reference Code

PCH (Pre-Mem)

PCH (Post-Mem)

CPU (Post-Mem)

[

o

Intel® FSP Spec 2.4

J

YAML Editor Reads Config File

Text to find: Search

UPI Debug Print Level

[An ~]

Memory Serial Debug Message Level

[Disable

SerialloUartDebugEnable

IEnabie VI

ISA Serial Base selection

[ox3Fe v]

https://github.com/tianocore/edk2/blob/master/IntelFsp2Pka/Tools/UserManuals/ConfigEditorUserManual.md

www.uefi.org

https://github.com/tianocore/edk2/blob/master/IntelFsp2Pkg/Tools/UserManuals/ConfigEditorUserManual.md

Next Generation of Firmware Configuration

www.uefi.org

Next Generation of Firmware

Configuration
e Uniting Configuration syntax usage to
YAML configuration

* Industry wide standard language syntax
with advantageous integration across

tech-stack

8

www.uefi.org

QA

www.uefi.org

Other events

x

Wed, October 18, 12:30pm - 12:50pm | SJCC - Concourse Level -
210CG

Why Quantum anq

Universal Payload for Optimized
Firmware Handoff in Server Platforms

Open System Firmware (OSF)

Flattened devicetree (FDT)

) With the collaborative effort to redefine the standards in the
- devicetree.org

firmware industry, the Universal Payload (UPL) drives key firmware
communities and industry partners towards a unified firmware
handoff interface.

. The UPL allows for decoupling of the platform initialization logic
SICHGINEALOERM 1o the more platform-independent but technology specific boot
Y e om0 s e N =R HETE] technology, including re-use of the upstream EDKII as the UEFI
Payload and upstream Linux kernel and userlands like u-root as the
BRI X% LinuxBoot payload, respectively. This re-use should allow for ease of

See more on FDT at URNGPSBI BRI tmoces orcems e soprato o tho maiboar 500
https://20230cpglobal.fnvirtual.app/a/schedule/ 5 cnersetes

specific platform details. This should also offer new opportunities
By Vincent Zimmer,

for platform designs as the potential platform design targets for
payload creators increases. This should also pave a new way
towards a common industrial standard lowering the firmware
deployment costs and maintenance on server platforms in the long

Standardizing RAS """
SJCC - Concourse

Speakers

By Rama Bhimanadhu

4 Vincent Zimmer . Lean Sheng Tan
Senior Principal Engineer - Intel - Firmware Lead - Selements

M
www.uefi.org

https://2023ocpglobal.fnvirtual.app/a/schedule/

Thanks for attending the UEFI Fall 2023
Developers Conference & Plugfest

For more information on UEFI Forum and UEFI
Specifications, visit http://www.uefi.org

presented by

intel

www.uefi.org

http://www.uefi.org/

	Firmware Configuration – Past, Present, and Future
	Catch Up From the Last 2 Days
	‘Speaker’ Bios
	Vincent Zimmer
	Gahan Saraiya
	Christine Chen
	Agenda
	Introduction
	Introduction
	Evolution
	Evolution
	Boot Flow Control with Firmware Configuration
	HII Implementation
	Present Practice
	Present Practice
	Present Practice – Non-Recommended Practices
	Present Practice - Tools and Tech
	Present Practice - Tools and Tech
	UFFAF UEFI Firmware Foundational Automation Framework
	UFFAF UEFI Firmware Foundational Automation Framework
	YAML and USF
	USF YAMLyaml_boot_configuration
	YAML Config Tool for Intel® FSP UPD
	Next Generation of Firmware Configuration
	Next Generation of Firmware Configuration
	QA
	Other events
	Slide Number 28

