
presented by

Implementing and Using the UEFI Key
Management Service (KMS)

www.uefi.org 1

UEFI 2020 Virtual Plugfest
September 17, 2020

Presented by Zachary Bobroff and Alex Podgorsky

Meet the Presenters

www.uefi.org 2

Zachary Bobroff

Technical Marketing Manager

Member Company: AMI

Alex Podgorsky

Firmware Engineer

Member Company: AMI

Agenda

• Introduction

• Data Security

• UEFI KMS Implementation

• Call to Action

www.uefi.org 3

Introduction

Implementing and Using the UEFI Key Management Service (KMS)

www.uefi.org 4

The UEFI KMS Protocol

• The UEFI specification has included the Key Management
Service (KMS) protocol definition since version 2.3.1 in
2011. This provides services to generate, store, retrieve
and manage cryptographic keys.

• What are some use cases of the KMS protocol in modern
systems?

• What does the interaction between UEFI firmware and a
KMS server look like?

• How can you implement the UEFI KMS protocol over Key
Management Interoperability Protocol (KMIP)?

www.uefi.org 5

What is KMS?

• Key Management Service (KMS) provides a way
to generate, store, and authenticate
cryptographic keys
– KMS servers are an integral part in data security

and can communicate with UEFI firmware to
securely transfer keys and protect encrypted data

– KMS servers are already used extensively in
enterprise environments
• For example: Windows volume licensing, Cloud KMS

services, etc.

www.uefi.org 6

EFI_KMS_PROTOCOL Structure
typedef struct _EFI_KMS_SERVICE_PROTOCOL {

EFI_KMS_GET_SERVICE_STATUS GetServiceStatus;

EFI_KMS_REGISTER_CLIENT RegisterClient;

EFI_KMS_CREATE_KEY CreateKey;

EFI_KMS_GET_KEY GetKey;

EFI_KMS_ADD_KEY AddKey;

EFI_KMS_DELETE_KEY DeleteKey;

EFI_KMS_GET_KEY_ATTRIBUTES GetKeyAttributes;

EFI_KMS_ADD_KEY_ATTRIBUTES AddKeyAttributes;

EFI_KMS_DELETE_KEY_ATTRIBUTES DeleteKeyAttributes;

EFI_KMS_GET_KEY_BY_ATTRIBUTES GetKeyByAttributes;

EFI_KMS_KEY_ATTRIBUTE *KeyAttributes;

…

…

} EFI_KMS_PROTOCOL;

www.uefi.org 7

No explicit references to hardware
implementation

The protocol is abstract, and a hardware
wrapper driver must be included to

provide access to the security service (e.g.
TPM, HSM, KMS, etc.)

Progression of UEFI KMS Protocol

• When the protocol was introduced, the UEFI Network
Stack did not have secure communication capabilities
– For example, there was no HTTP with TLS

• Current UEFI interfaces – HTTP(s) (UEFI 2.5, 2015) – make
it possible to develop a fully generic and portable EFI
KMS solution employing existing EFI Network Stack
protocols to communicate securely with KMS servers

• For example, encrypted drives can be decrypted utilizing
secure authentication using the UEFI KMS Protocol

www.uefi.org 8

KMIP Over KMS
• As usual, the UEFI specification provides just the definition

for the service and the underlying implementation can vary
• There are various possible implementations of the KMS

protocol
– A simple implementation is to build it on top of something

already in the system such as a Trusted Platform Module (TPM)
– The most practical UEFI implementation involves interfacing

with a KMS server using the KMIP industry standard over a
secure network connection
• KMIP is an OASIS standard for the management of objects stored

and maintained by key management systems
• KMIP defines how key management operations and data should

be encoded and communicated between client and server
applications

• For more information on KMIP, check out the OASIS KMIP
Technical Committee

www.uefi.org 9

Key Management Server

EFI_KMS_PROTOCOL

TPM

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=kmip

UEFI Driver Consuming KMS Protocol via KMIP

www.uefi.org 10

UEFI Device Driver

EFI_KMS_PROTOCOL->GetKey()

Key Client Key Server

KMIP API
Internal representation of the

key request/response

KMIP
Encode

KMIP
Decode

Network Transport Network Transport

KMIP API
Internal representation of the

key request/response

KMIP
Encode

KMIP
Decode

Get Key
KMIP

Return Key

KMIP over

HTTP(s)/TCP_TLS

network layer

Implementing and Using the UEFI Key Management Service (KMS)

www.uefi.org 11

Data Security

Keeping Data Secure Using KMS

• Data privacy continues to be a high-priority concern,
especially in enterprise and cloud environments
– Data privacy and protection policies and regulations have

strict requirements
• Many companies encrypt their storage devices to comply with

these regulations

– Self-encrypting drives (SED) are a popular solution to data
security, but are commonly “married” to their platform
today

• How can you boot to an encrypted drive?
• How can an SED migrate to another platform without

breaking functionality?

www.uefi.org 12

R
e
q
u
e
s
t

S
e
n
d

Using the UEFI KMS Protocol to Boot
to an Encrypted Drive
• Encrypted drives can be unlocked during boot or in the

OS, but what if such a drive is the boot device or has data
needed during the boot process?

• Traditionally, encrypted drives have needed user input or
static keys on a platform to unlock the drives during the
boot process

• KMS offers a secure way to manage cryptographic keys
used by encrypted drives for authentication
– Automatic authentication does not require user input
– Greatly beneficial to enterprise and HyperScale

environments
– In case of system failures, encrypted drives can be migrated

to other systems and remain operable and secure

www.uefi.org 13

UEFI KMS Implementation

www.uefi.org 14

Implementing and Using the UEFI Key Management Service (KMS)

The Role of Independent Hardware Vendors (IHVs)

• Successful implementation of the UEFI KMS
Protocol requires storage controllers to
consume it

– Tight collaboration with system firmware is
required by IHVs when designing device drivers

www.uefi.org 15

RAID Driver

AHCI Driver

…

UEFI Firmware

1

2
KMS Component

EFI_KMS_PROTOCOL
Remote

KMS Server

4

3

5

UEFI KMS Implementation

www.uefi.org 16

1) UEFI firmware requests key from KMS server
2) KMS server provides key to UEFI firmware
3) UEFI firmware publishes EFI_KMS_PROTOCOL
4) Any UEFI Driver (AHCI, RAID, etc.) consumes the

Protocol
5) UEFI Drivers unlock the encrypted drives

Request Delivery
Encrypted

Drive

Implementing and Using the UEFI Key Management Service (KMS)

www.uefi.org 17

Call to Action

Call to Action
• The UEFI KMS Protocol can be very useful in enterprise and

HyperScale environments, especially as drive encryption and
other applications for cryptographic keys become more common

• UEFI stakeholders should understand how to implement KMS
authentication in their firmware to encourage a higher adoption
rate
– Independent BIOS Vendors (IBVs) should support the UEFI KMS

Protocol in their firmware
– IHVs should implement the UEFI solution by consuming the UEFI

KMS Protocol
– Independent Software Vendors (ISVs) should also look to leverage

the UEFI KMS Protocol to further secure their solutions

www.uefi.org 18

Questions?

www.uefi.org 19

Thanks for attending the UEFI 2020 Virtual Plugfest

For more information on UEFI Forum and UEFI
Specifications, visit http://www.uefi.org

presented by

www.uefi.org 20

http://www.uefi.org/

