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The UEFI KMS Protocol

• The UEFI specification has included the Key Management 
Service (KMS) protocol definition since version 2.3.1 in 
2011. This provides services to generate, store, retrieve 
and manage cryptographic keys.

• What are some use cases of the KMS protocol in modern 
systems?

• What does the interaction between UEFI firmware and a 
KMS server look like?

• How can you implement the UEFI KMS protocol over Key 
Management Interoperability Protocol (KMIP)?
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What is KMS?

• Key Management Service (KMS) provides a way 
to generate, store, and authenticate 
cryptographic keys
– KMS servers are an integral part in data security 

and can communicate with UEFI firmware to 
securely transfer keys and protect encrypted data

– KMS servers are already used extensively in 
enterprise environments
• For example: Windows volume licensing, Cloud KMS 

services, etc.
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EFI_KMS_PROTOCOL Structure
typedef struct _EFI_KMS_SERVICE_PROTOCOL { 

EFI_KMS_GET_SERVICE_STATUS GetServiceStatus; 

EFI_KMS_REGISTER_CLIENT RegisterClient; 

EFI_KMS_CREATE_KEY CreateKey; 

EFI_KMS_GET_KEY GetKey; 

EFI_KMS_ADD_KEY AddKey; 

EFI_KMS_DELETE_KEY DeleteKey; 

EFI_KMS_GET_KEY_ATTRIBUTES GetKeyAttributes; 

EFI_KMS_ADD_KEY_ATTRIBUTES AddKeyAttributes; 

EFI_KMS_DELETE_KEY_ATTRIBUTES DeleteKeyAttributes; 

EFI_KMS_GET_KEY_BY_ATTRIBUTES GetKeyByAttributes; 

EFI_KMS_KEY_ATTRIBUTE *KeyAttributes;

…

…

} EFI_KMS_PROTOCOL;
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No explicit references to hardware 
implementation

The protocol is abstract, and a hardware 
wrapper driver must be included to 

provide access to the security service (e.g. 
TPM, HSM, KMS, etc.)



Progression of UEFI KMS Protocol

• When the protocol was introduced, the UEFI Network 
Stack did not have secure communication capabilities
– For example, there was no HTTP with TLS

• Current UEFI interfaces – HTTP(s) (UEFI 2.5, 2015) – make 
it possible to develop a fully generic and portable EFI 
KMS solution employing existing EFI Network Stack 
protocols to communicate securely with KMS servers

• For example, encrypted drives can be decrypted utilizing 
secure authentication using the UEFI KMS Protocol
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KMIP Over KMS
• As usual, the UEFI specification provides just the definition 

for the service and the underlying implementation can vary
• There are various possible implementations of the KMS 

protocol
– A simple implementation is to build it on top of something 

already in the system such as a Trusted Platform Module (TPM)
– The most practical UEFI implementation involves interfacing 

with a KMS server using the KMIP industry standard over a 
secure network connection
• KMIP is an OASIS standard for the management of objects stored 

and maintained by key management systems
• KMIP defines how key management operations and data should 

be encoded and communicated between client and server 
applications

• For more information on KMIP, check out the OASIS KMIP 
Technical Committee
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UEFI Driver Consuming KMS Protocol via KMIP
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Keeping Data Secure Using KMS

• Data privacy continues to be a high-priority concern, 
especially in enterprise and cloud environments
– Data privacy and protection policies and regulations have 

strict requirements
• Many companies encrypt their storage devices to comply with 

these regulations

– Self-encrypting drives (SED) are a popular solution to data 
security, but are commonly “married” to their platform 
today

• How can you boot to an encrypted drive?
• How can an SED migrate to another platform without 

breaking functionality?
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Using the UEFI KMS Protocol to Boot 
to an Encrypted Drive
• Encrypted drives can be unlocked during boot or in the 

OS, but what if such a drive is the boot device or has data 
needed during the boot process?

• Traditionally, encrypted drives have needed user input or 
static keys on a platform to unlock the drives during the 
boot process

• KMS offers a secure way to manage cryptographic keys 
used by encrypted drives for authentication 
– Automatic authentication does not require user input
– Greatly beneficial to enterprise and HyperScale

environments
– In case of system failures, encrypted drives can be migrated 

to other systems and remain operable and secure
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UEFI KMS Implementation
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The Role of Independent Hardware Vendors (IHVs)

• Successful implementation of the UEFI KMS 
Protocol requires storage controllers to 
consume it

– Tight collaboration with system firmware is 
required by IHVs when designing device drivers
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1) UEFI firmware requests key from KMS server
2) KMS server provides key to UEFI firmware
3) UEFI firmware publishes EFI_KMS_PROTOCOL 
4) Any UEFI Driver (AHCI, RAID, etc.) consumes the 

Protocol
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Call to Action
• The UEFI KMS Protocol can be very useful in enterprise and 

HyperScale environments, especially as drive encryption and 
other applications for cryptographic keys become more common

• UEFI stakeholders should understand how to implement KMS 
authentication in their firmware to encourage a higher adoption 
rate
– Independent BIOS Vendors (IBVs) should support the UEFI KMS 

Protocol in their firmware 
– IHVs should implement the UEFI solution by consuming the UEFI 

KMS Protocol
– Independent Software Vendors (ISVs) should also look to leverage 

the UEFI KMS Protocol to further secure their solutions 
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Questions?
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Thanks for attending the UEFI 2020 Virtual Plugfest

For more information on UEFI Forum and UEFI 
Specifications, visit http://www.uefi.org
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