presented by

Attacking and Defending the Platform

Spring 2018 UEFI Seminar and Plugfest
March 26-30, 2018

Presented by Erik Bjorge and Maggie Jauregui (Intel)

Legal Notice

No computer system can be absolutely secure.

Intel, the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others

© Intel Corporation.

Today’s Attack Scenarios

Boot Media
(SPI)
- SMM UEF!
S ly Ch
up:tz/aCkaln Confused Variables
Deputy Attack
Open Case Access 1O, MSR, MMIO, etc m

Decreasing

8

Example: UEFI Variable Attack from privileged ring 3 process

Unprivileged Software Attack

Possible Security Impacts

Overwrite early firmware code/data if (physical
address) pointers are stored in unprotected variables

Bypass UEFI and OS Secure Boot if its configuration or
keys are stored in unprotected variables

Bypass or disable hardware protections if their policies
are stored in unprotected variables

Make the system unable to boot (brick) if boot-
essential settings are stored in unprotected variables

Communication Channel if malware uses variables for
retrieval of data at a later time (e.g. after OS wipe)

8

Authenticated Variables
EDK Il Variable Lock Protocol (Read-only Variables)
VarCheckLib

UEFI Variable Mitigation Options

Variables Protection Attributes

Boot Service (BS)

— Accessible to DXE drivers / Boot Loaders at boot time
— No longer accessible at run-time (after ExitBootServices)

Authenticated Write Access

— Digitally signed with MonotonicCount incrementing each successive variable update to
protect from replay attacks

— List of signatures supported by the firmware is stored in SignatureSupport variable

Time Based Authenticated Write Access

— Signed with TimeStamp (time at signing) to protect from replay attacks

— TimeStamp should be greater than TimeStamp in existing variable

— Used by Secure Boot: PK verifies PK/KEK update, KEK verifies db/dbx update
— certdb variable stores certificates to verify non PK/KEK/db(x) variables

EDK Il Read-Only Variables

* EDKIlIimplements VARIABLE LOCK PROTOCOL which provides a
mechanism to make some variables “Read-0Only” during Run-time OS

* DXE drivers make UEFI variables Read-Only using
RequestToLock () APl before EndOfDxe event

 After EndOfDxe event (e.g. during OS runtime), all registered
variables cannot be updated or removed (enforced by SetVariable

API)

 Lock is transient, firmware has to request locking variables every boot.
Before EndOfDxe variables are not locked

8

VarChecklLib

A single place to check for acceptable variable contents
— Each variable name/GUID is mapped to rules

— Return appropriate error when attempting to set invalid data
to a given variable

— Begin checking at EndOfDxe (prior to execution of 3" party
code)

https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Library/VarCheckLib/VarCheckLib.c

https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Library/VarCheckLib/VarCheckLib.c

chipsec util uefi var-write

Attack: Storing Data in UEFI Variables

Example: SMM Confused Deputy

Privileged Software Attack

8

SMI Input Pointer Vulnerabilities

* When OS triggers SMI (e.g. SW SMI via I/O port 0xB2) it passes
arguments to SMI handler via general purpose registers

* OS may also pass an address (pointer) to a structure through
which an SMI handler can read arguments & returns result

 SMI handlers traditionally were not validating that such pointers
are outside of SMRAM

* |f an exploit passes an address which is inside SMRAM, SMI
handler may write onto itself on behalf of the exploit

* References: A New Class of Vulnerability in SMI Handlers (2015)

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjtk_7-2uXXAhWLv1QKHUfSDtEQFggnMAA&url=https://cansecwest.com/slides/2015/A New Class of Vulnin SMI - Andrew Furtak.pdf

SMI “Confused Deputy” Attacks@ﬂ

Phys Memory

!
RBX (pointer)

SMI Handler

RCX (function)

VMM Memory
Guest OS Memory

Guest OS Memory

Attacker can target SMM itself or bypass VMM protections, writing to VMM or
other Guest VM memory

Limiting SMI Handler Memory Map to Addresses Reserved for Firmware
CHIPSEC Testing

Mitigation Options

SMI Handler Memory Map
Restriction

Phys Memory Phys Memory

SMRAM
SMRAM

Comm Buffer
Comm Buffer

SMI Handler Access

OS/VMM Memory OS/VMM Memory

0
0
Q
O
O
<
o
e
-
©
I
=
p)

ﬂr[\ding SMM “Pointer” vulnerabilities

[x][Module: Testing SMI handlers for pointer validation vulnerabilities

[x][

[*] Allocated memory buffer (to pass to SMI handlers) : 0x00000000DAAC3000
[*] >>> Testing SMI handlers defined in 'smm config.ini'..

[*] testing SMI# Ox1lF (data: 0x00) SW SMI Ox1F
[*] writing 0x500 bytes at 0x00000000DAAC3000
> SMI 1F (data: 00)
RAX: Ox5ALA5A5A5A5A5ALA
RBX: 0x00000000DAAC3000
RCX: 0x0000000000000000
RDX: Ox5ALA5A5A5A5A5ALA
RSI: Ox5ALA5A5A5A5A5A5LA
RDI: Ox5ALA5A5A5A5A5ALA
< checking buffers contents changed at 0x00000000DAAC3000 +[29,32,33,34,35]
['] DETECTED: SMI# 1F data 0 (rax=5A5A5A5A5A5A5A5A rbx=DAAC3000 rcx=0 rdx=...)

[-] <<< Done: found 2 potential occurrences of unchecked input pointers

https://www.youtube.com/watch?v=z20Qf45nUeaA

https://www.youtube.com/watch?v=z2Qf45nUeaA

Example: Supply Chain Attack

Limited Physical Access Attack

PoC SmmBackdoor by Dmytro Oleksiuk @';ﬂ

. CmBackdoor . C (GT1) o 2509390 3.3 5 3696 36-3696.36-96-36.96.36.36-96.36-36 36-36 963696 36-36 363696 36-36.36-36 96 36.96 6. 3696 3636 3636
ol t” db dd SmmBackdoor .c (592) :
n S a e y a I ng S::B:Ekdggi‘.gﬁﬂﬂ : UEFI 5MM access tool
SmmBackdoor .c (594)
T : SmmBackdoor.c(595) : by Dleksiuk Dnytro (aka Crdsh)
additional sections to Srackivor <) | coammatl o
SmmBackdoor .c (597) :

SmmBackdoor .c (598) ;%3303 33 5363 336303696 3.3 33696 3636 3636 363696 36036 33636 3636 336 3636 363626 3636 36

EX|St|ng SMM drlver SmmBackdoor .c (599)

SmmBackdoor.c(617) : Started as infector payload
smmBackdoor.c (620) : Image base address is 0xd7024200
SmmBackdoor.c (630) : Resident code base address is 0xd613£000

o P rOVi d e S S IVI I i n te rfa C e S smmBackdoor .c (380) : BackdoorEntryResident O : Started

SmmBackdoor.c (406) : Protocol notify handler is at 0xd613f6h8
SmmBackdoor .c (640) : Previous calls count is 1

fO r‘ OS I eve I C a I | e r‘ SmmBackdoor.c (657 : Rumming in SMM
SmmBackdoor.c (681) : SMM system table is at Oxd{0069e0
SmmBackdoor.c (536) : SMM protocol notify handler is at 0xd7024cec
SmmBackdoor .c (503) : Max. SW SMI value is OxEF

o P .d d/ .t SnmBackdoor .c(514) : SW SHMI handler is at Oxd?024b80
rOVI eS rea er e S:ﬁﬂ:ikdggi‘.gﬁﬁﬂl : Prutucul;:;ti?LHEd?EP (;‘: Protocol ready

memory access. Easily
extensible

Building reliable SMM backdoor for UEFI based platforms

http://blog.cr4.sh/2015/07/building-reliable-smm-backdoor-for-uefi.html

First Commercial UEFI Rootkit from

HackingTeam
@Security W)

llinR

Products v What's New™

Hacking Team's "Bad BIOS™ A Commercial

Rootkit for UEFI Firmware?

Tuwesday, July 14 2075

Attack Details

The examination of commercial malware developed by Hacking Team has revealed much to the security community. Of particular interest to
platform security researchers at Intel’s Advanced Threat Research team (ATR) isthe presence of what appears to be a UEFI-based persistent
infection mechanism. ATR has been researching vulnerabilities related to system firmware and working with a community of firmware

developers and platform manufacturers to mitigate these threats. Others have also posted good information about this issue. Here, we will
provide some preliminary analysis of the firmware threat.

UEFI Interfaces

i‘Boundary OS-Absent
for PM_AUTH/ App
EndOfDxe f)
Event
| UEFI Shell
Init (
- I Tran)ﬁeni'
r OS Boot
(, Loader

Security Pre EFI Driver Boot Dev Transient Run Time
(SEC) [Initialization Execution System Load
(PEI) Environment Select (RT)
(DXE) (BDS) (TSL)

From Secure Boot, Network Boot, Verified Boot, oh my and almost every publication on UEFI

https://docs.google.com/file/d/0BxgB4JDywk3MdnRsbnh6NW9rYU0/edit?pli=1

Attacking without Physical Access

(targeting vulnerable firmware)

= \
DXE _ UEFI
M0d|fy UEFI BIOS Boot Loader
Firmware in ROM
DXE
Driver

Signed BIOS
Update

Bootx64.efi
Bootmgfw.efi

UEFI DXE Core / Dispatcher

System Firmware (SEC/PEI)

Hardware

CHIPSEC Vulnerability testing
CHIPSEC Whitelist testing

Hardware Root of Trust

Protection and Mitigation Options

Checking for BIOS Write Protection

chipsec main.py --module common.bios wp

[*]

[x][
[x] [Module: BIOS Region Write Protection
[x][

running module: chipsec.modules.common.bios wp

[*] BIOS Control = 0x02
[05] SMM BWP = 0 (SMM BIOS Write Protection)
[04] TSS = 0 (Top Swap Status)
[01] BLE 1 (BIOS Lock Enable)
[00] BIOSWE = 0 (BIOS Write Enable)

[!] Enhanced SMM BIOS region write protection has not been enabled (SMM BWP is not used)

[*] BIOS Region: Base = 0x00500000, Limit = OxQOO07FFFFF
SPI Protected Ranges

PRx (offset) | Value | Base | Limit | WP? | RP?
PRO (74) | 87FF0780 | 00780000 | OO7FFO00 | 1 | O
PR1 (78) | 00000000 | 00000000 | 00000000 | O | O
PR2 (7C) | 00000000 | 00000000 | 00000000 | O | O
PR3 (80) | 00000000 | 00000000 | 00000000 | O | O
PR4 (84) | 00000000 | 00000000 | 00000000 | O | O

(1]
(1]

SPI protected ranges write-protect parts of BIOS region

ranges to protect the entire BIOS region
[-] FAILED: BIOS is NOT protected completely

BIOS should enable all available SMM based write protection mechanisms or configure SPI protected

(other parts of BIOS can be modified)

CHIPSEC: Detecting Firmware Modification

 Use CHIPSEC to generate and check hashes of
firmware modules

— Use whitelists to detect changes from the original
firmware

— Whitelist can be generated by user or manufacturer

— Whitelists can be signed to verify source of
information

* More info including full module source and blog:

— https://github.com/chipsec/chipsec/blob/master/chipsec/modules/tools/uefi/whitelist.py
— https://software.intel.com/en-us/blogs/2017/12/05/using-whitelists-to-improve-firmware-security

https://github.com/chipsec/chipsec
https://github.com/chipsec/chipsec/blob/master/chipsec/modules/tools/uefi/whitelist.py
https://software.intel.com/en-us/blogs/2017/12/05/using-whitelists-to-improve-firmware-security

Generating Whitelist...

chipsec main -n -m tools.uefi.whitelist -a generate,orig.]json,fw.bin

[+] loaded chipsec.modules.tools.uefi.whitelist
[*] running loaded modules

[*¥] running module: chipsec.modules.tools.uefi.whitelist
[*] Module arguments (3):
[‘“generate’, 'orig.json’, 'fw.bin']

reading firmware from 'fw.bin'...

found 278 EFI executables in UEFI firmware image 'fw.bin’

[*]
[*] generating a list of EFI executables from firmware image...
[*]
[*¥] creating J50N fTile "/home/user/p2/chipsec/orig.json’...

Assumes there is a way to generate clean (uninfected) list of EFl executables. For example, from
the update image downloaded from the vendor web-site

Checking Against Whitelist...

chipsec main -n -m tools.uefi.whitelist —-a check,orig.json,fw.bin

[X][Module: simple white-list generation/checking for (U)EFI firmware
[#][=======m=====ccessssssssesme=cmmsccssssesssmssmessse=csssssosssessssses
[*] reading firmware from ‘unpacked'...

[*] checking EFI executables against the list 'C:\chipsec\original.json’

[*] found 279 EFI executables in UEFI firmware image 'unpacked'’

[!] found EFI executable not in the list:
3ad4cdca9c5d41e680bb4b00118c31caeb6c1b5990593875e9024a7e278819b132 (sha256)
64d44b705bb7aed4b8e4d9fbob3b3c66bcbaae57f (shal)
{F50258A9-2F4D-4DA9-861E-BDA84DO7A44C}
rkloader

[!] found EFI executable not in the list:
ed0dc60e47d3225e21489e7693991d9e071342e2eeBbe3ba8040ead5¢c945eta
d359a9546b277f16bc495fe7b2e8839b5d0389a8 (shal)
{EAEASAEC-C9C1-46E2-9D52-432AD25A9B0B }
<unknown> Extra EFI executables belong to

[!] found EFI executable not in the list: HackingTeam’s UEFI rootkit
dd2b99df1110459d3a9d173240e909de28eb895614a6b3b7720eebf470a98 Y
4a1628fal128747c77¢c51d57a5d09724007692d85 (shal)
{F50248A9-2F4D-4DE9-86AE-BDA84DO7A41C}

\ i
[!] WARNING: found 3 EFI executables not in the list 'C:\chipsec\original.json’

Firmware Forensic Artifacts to Consider

1. Layout and entire contents of SPI Flash 10. SMBIOS table

memory 11. HW protection settings (e.g. SPI W/P)
2. BIOS/UEFI firmware including EFI 12. System security settings (Secure Boot,
binaries and NVRAM etc.)
3. Runtime or Boot UEF! Variables (non- 13 contents of TPM Platform
volatile and volatile) Configuration Registers (PCR)
4, UEFI Secure Boot certificates (PK, KEK, 14. Firmware images from other
db/dbx ..) components: Embedded Controller,
5. UEFI system and configuration tables HDD/SSD, NIC, Baseboard
(Runtime, Boot and DXE services) Management Controller (BMC) etc.
6. UEFI S3 resume boot script table 15. MBR/VBR or UEFI GUID Partition Table
7. PCle Option (Expansion) ROMs (GPT) N
8. Settings stored in RTC-backed CMOS ~ 16. Files on EFI system partition (boot
memory loaders)

9. ACPI tables

Conclusions

Resilient Defense

Boot Media l

Runtime Firmware
(eg. SMM)

HW Configuration I

I Decreasing Attacker Power

Thanks for attending the Spring 2018 UEFI
Plugfest

For more information on the UEFI Forum and
UEFI Specifications, visit http://www.uefi.org

presented by

UEFI Plugfest — Spring 2018 www.uefi.org

http://www.uefi.org/

