(intel”
Intel Software Professionals Conference

Collaborate . Innovate . Advance.

Software Reuse In BI1OS using
Program Families and Software
Product Lines

Lee Rosenbaum
Software Engineer
Intel

June 24, 2010

Last Updated: Oct 23, 2009

This presentation is for informational purposes only. INTEL MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS SUMMARY.

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino logo, Core Inside, Dialogic, FlashFile, i960, InstantlP, Intel, Intel logo, Intel386,
Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Core, Intel Inside, Intel Inside logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel
NetBurst, Intel NetMerge, Intel NetStructure, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Viiv, Intel vPro, Intel XScale, IPLink,
Itanium, Itanium Inside, MCS, MMX, Oplus, OverDrive, PDCharm, Pentium, Pentium Inside, skoool, Sound Mark, The Journey Inside, VTune,
Xeon, and Xeon Inside are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2006, Intel Corporation. All rights reserved.
Last Updated: Aug 28, 2006

SWPC (intel
2 |ntel Software Professionals Conference

e Executive Summary

e Difficulties of Software Reuse

e Program Families and Software Product Lines
e Reuse In the UEFI/PIWG BIOS Architecture

e Conclusions and Opportunities

SWPC

3 |ntel Software Professionals Conference

Presenter
Presentation Notes
This presentation is based on:
A project done in fall of 2008 for Portland State’s Master of SW Eng. program [in OMSE 551 - Strategic SW Engineering]

In this talk, I will:
Introduce the SW Eng concepts of program families and SW product lines
Discuss the SW Eng principles on which they are based
Show an example of their application in the UEFI/PIWG Bios Architecture
Discuss how that enables SW reuse

e Software Reuse needs to be planned

e Techniques Exist: Program Families and Software
Product Lines

e In the BIOS domain, the UEFI/PIWG Architecture
IS one example of a product line

e Other examples cited in backup section

SWPC intel)

4 |ntel Software Professionals Conference

Presenter
Presentation Notes
Premise: Problems with delivering quality SW on schedule, aka the “SW Eng crisis”, can be [at least partially] addressed by the application of existing, although not necessarily widely known, approaches: specifically program families and SW Product Lines
	[See Additional Info slide for references]
Note: not claiming this as the ultimate silver bullet (there is no silver bullet), but it can have a significant impact

These approaches are based on accepted SW Engineering principles and there are examples of their application at Intel and in industry
But they require a broader, multi-project view
Specifically: planning for reuse across multiple related products
Some groups may all ready be doing some of these things without being aware of these terms,

An awareness of the sound foundations of these techniques and familiarity with examples of their application can foster their successful application in the future.
The goal is to raise awareness of these techniques

e Maximize software reuse across a set of related
products.

e Complex SW is essentially difficult

e Processes and approaches often discourage reuse
e Craftsman approach
e Single product focus

Focus on reuse at the architectural level

SWPC intel)

5 |ntel Software Professionals Conference

Presenter
Presentation Notes
Reuse is hard and typical [single product-centric] processes do not enable reuse across multiple projects.
More generally,
Complex SW is essentially difficult
	In his No Silver Bullet paper, Fred Brooks discussed essential and accidental difficulties:
Essential difficulties – are due problems being very difficult
Accidental difficulties – caused by our approach i.e. not planning for reuse
[See Additional Info slide for link]

The hardest part of SW dev. is the conceptual structures (i.e. the architecture), not the coding & testing,
yet the latter [the accidental difficulties] is what tends to get the focus

 Coding is typically 10-20% of a project’s effort yet gets most of the focus.
 If the architecture has issues, a focus on coding [typically involving work-arounds for arch. issues] is not productive.

Craftsman-centric approaches discourage reuse
Most view coding new stuff as fun and reusing old stuff as less fun, but we seldom are creating a completely new application
Craftsman is ok for small or completely new projects, but large projects require a sound architecture which can be structured to facilitate reuse.
SW Product Lines, lead to reuse & SW factories – in which the craftsman builds the means of production vs. building individual products
	Should focus on reuse at the architectural level in order to eliminate problems later

Typical single product Dev processes don’t encourage reuse,
since there is no owner for the reusable components
Types of reuse: [opportunistic vs. systematic] – See next slide’s notes …

Who does reuse affect?
e Validation teams

e Product teams

e Software teams

e Customers

Why is it important?

e Reduces development time and improves quality by allowing
working code to be reused

Reuse across products can be increased with planning

6 |Intel Software Professionals Conference

SWPC @

Presenter
Presentation Notes
Types of reuse:
Opportunistic reuse - Reuse from other products or generic libraries is ad hoc, if at all – i.e. up to each developer.
	Hard to find what you need and often it’s not it is not quite suitable, so still needs changes, since the context is often different
Systematic reuse – planned reuse across a family of products in a domain
A domain is a group of products with a well known set of features that are generally accepted by stakeholders
	Need to consider previous products, business goals, process and org when planning the reuse

Reuse is hard [and has a cost]
But we do not make it easier by not planning for it

e Program Family

— Considers the commonalities of the set before the
variabilities of individual members

e Software Product Line

— A collection of SW systems sharing a managed set of
features, constructed from a common set of core
elements

SWPC

7 |ntel Software Professionals Conference

Presenter
Presentation Notes
These ideas have been around in the Software engineering community and industry for some time, but are not widely known
They are based on the work of Parnas & Bass, cited in references
Requires deep domain knowledge and a commonality analysis to determine the commonalities and variabilities [defined below]
commonality analysis – See: references

Program Family – as defined by David Parnas:
	Instances of a family share a common architecture and differ in implementation of variabilities
Commonality – A feature common to a set of programs
Variability – A feature unique to a subset, or just 1 member of the set

SW Product Line – as defined by Bass et. Al.:
Maximizes reuse over a family of similar products
By building infrastructure to exploit the commonalities of the domain
A PL is a family, but a family not necessarily a PL
So can think of a PL as: A means of maintaining control over SW development in order to achieve business goals

A PL’s Cost is developing & maintaining the PL as a product
	I.E. the cost of developing & maintaining the reusable architecture & infrastructure	

The UEFI/PIWG arch. is an example of a family & also a home grown [or ad hoc] product line,
since it was developed without a PL dev process [discussed in next slide].
This implies that product lines can be a logical solution to real world problems

e Domain Engineering Phase

— Define the family and level of production

e Develop Application Engineering Environment
— Defines how each PL Instance will be developed

e Application Engineering

— Produce each family instance

Lightweight adoption - requires more expertise &
development for each instance than a full PL process

SWPC

8 |ntel Software Professionals Conference

Presenter
Presentation Notes
Domain Engineering – process for determining the scope of a family and how each member will be produced (i.e. the level of automation)
	For example can modules be reused, possibly with different configuration values, or are new modules required?
Application Engineering – process for rapidly creating new family members using the domain’s production process.
Application Modeling Language - allows non-programmer to model a new instance without writing new code

Assumption is that much development is redevelopment and can be avoided by anticipating the kinds of changes that will be needed
Typically see payback after 3rd family instance
Some PL adopters [from www.softwareproductlines.com]: Nokia, Phillips Medical, HP printer, Boeing, Ericsson, Lucent, Lsi Logic, GM, Celsius Tech, Engenio …

The transition to product line approach can be disruptive & require org & process changes, but lighter weight approaches exist, such as incremental adoption, pilots …
Some of the observed benefits of product lines [aka Strategic Software Reuse] are:
Improved time to market
Reduced engineering cost
Lower defect rates
Lower dev. risk
Ability to support a larger product portfolio
	by factors of 3 to 50 [from www.softwareproductlines.com]
Due to
Consolidation of commonality
Management of variation
Elimination of duplicate effort

e Well defined set of extensible interfaces
e Common set of phase appropriate services

e Decouples:

— SW abstractions fromm micro-architectures, HW interfaces,
Industry standards & platform topologies

— OS from BIOS via standardized abstract interface.

e Modules collected into platforms using build
description files

e Platform configuration data to specify variabilities

Open sourced / standardized BIOS infrastructure

SWPC intel)

9 |ntel Software Professionals Conference

Presenter
Presentation Notes
The UEFI/PIWG architecture:
 provides abstract interfaces for:
Industry standards: ACPI, SMBIOS, TCG
Devices: PCI, SmBus, …
OS Neutrality: Windows, Linux, OSX
Instruction set independence: ARM, IA32, X64 & Itanium; EFI Byte Code
Scales from mobile devices thru servers
Provides common phase appropriate services:
	UEFI boot & runtime services
	DXE Runtime services
	SMM services
	Industry standards [PCI, ACPI, …]
	Hardware components [chipsets, devices …]
Uses build description files: inf, dec, dsc, fdf
Provides PCD’s to specify variabilities at build or runtime,
	not application engineering as in a full PL implementation
	Maybe the beginnings of an application modeling language

Product Line Principles Framework Principles

Design for ease of
change

Information hiding Modularity

Scalability

Abstraction Abstract interfaces

Separation of concerns

SWPC intel)

10 |ntel Software Professionals Conference

Presenter
Presentation Notes
The principles on which the framework architecture was based correspond closely to the SW engineering principles on which program families and SW product lines were based
	

e UEFI.org

—Promoters: AMD, Intel, Apple, Dell, HP, IBM,
Lenovo, AMI, Phoenix, Insyde, Microsoft

—total member companies: 120+

eDuring 2009, = 50% of systems shipped will
be UEFI compliant

*BIOS as distinguishing product feature

—Apple boot camp capability allowing MAC'’s to
boot Windows

SWPC intel)

11 |ntel Software Professionals Conference

Presenter
Presentation Notes
Quote from a Tiano licensee:
	“By leveraging UEFI to build trusted platforms, more features can be readily
	added to the platform versus the space and size limitations of legacy BIOS”

UEFI & PIWG standards groups
Multiple Edk & Edk2 versions inside & outside Intel for validation & platforms

Examples of UEFI/PIWG based Product lines: - based on various EDK & EDK2 versions
	Intel verification & product BIOS’s
	UEFI / PIWG adopter’s BIOS’s …

e One IBV reported:

—“100% common non-Silicon code across IA32 &
X64 platforms [Atom to Xeon]”

—Reduced training and time to market

e 709 shared code

—between Itanium [server] & X64 [workstation]
reference platforms

—with no common Si

e 85% shared code
— If only difference is processor architecture

SWPC intel)

12 |ntel Software Professionals Conference

Presenter
Presentation Notes
Quote from Tiano licensee:
	“By leveraging UEFI to build trusted platforms, more features can be readily
	added to the platform versus the space and size limitations of legacy BIOS”

UEFI & PIWG standards groups
Multiple Edk & edk2 versions inside & outside Intel for validation & platforms

Examples of UEFI/PIWG based Product lines:
	SSG, verification & product BIOS’s based on various EDK & EDK2 versions
	IBV BIOS’s …
	Customer BIOS’s [HP, Dell, IBM …]

SWPC

13 |ntel Software Professionals Conference

e Organization & process changes are often needed
e EXpect payback after 2 or 3 instances

e Need to deal with resistance to change:
— New concepts, languages, tools, techniques
— Code generation, hidden Makefiles, Wizards ...

e Minimize support of multiple generations and
versions

e Framework transition complicated by legacy BIOS
Issues and industry standards process

e Creates new opportunities

SWPC intel)

14 |ntel Software Professionals Conference

Presenter
Presentation Notes
Very different developing legacy BIOS in x86 assembler to a UEFI/PIWG BIOS in C

Starting to see:
	UEFI services market. Examples: encryption, compression, signing, …
	UEFI training, tools, conformance testing …
	PI components - Allows silicon vendors to package reference code as modules that snap-into PI Architecture firmware implementations

Vendors innovating in specific areas based the market provided by the common architecture
Allows a make / buy decision – i.e. Does a module all ready exist that can be reused or purchased?

Cost is the org & process changes required to maintain the product line as a product
This transition is often preceded by a disruptive event such as need to support Itanium in the case of the framework,
[or a merger in the case of the Celsius Tech example on slide 20]

e The UEFI/PIWG Architecture has enabled the
creation of multiple software product lines both
Inside and outside of Intel, fostering

standardization and innovation while changing the
BIOS landscape

e Can Product Line approaches be applied in other
domains?

SWPC intel)

15 |ntel Software Professionals Conference

Presenter
Presentation Notes
This architecture is supporting multiple product lines across products, divisions, groups, market segments and technologies.

SWPC

16 |ntel Software Professionals Conference

(O Pre-boot
(UEFI or Today's)fl Tools

UEFI Specification

Platform Drivers

Silicon Component
Modules

Hardware

PEIIDAE Pl Founcdzatiorn

B Vodulzr componznis

SWPC

17 |ntel Software Professionals Conference

PIWG — defines the platform
Initialization infrastructure
beneath the UEFI spec.

€DXE Layer
Driver Execution Environment

€PEI Layer

Pre-EFI Initialization

Presenter
Presentation Notes
Light blue boxes - the PEI & DXE phase sets of modules
Green H – is common infrastructure & services used by the silicon modules & platform drivers
Yellow - UEFI specification defines the BIOS – OS interface

UEFI
| E}éerf:a.:es GS 'A b.'.i‘ en t

Baudiary App
for Pﬂld'_AU T {)
Device, UEFI Shell

Bus, or
Service “Transient |
Driver OS Boot
- r Loader

EI Driver Boot | 0S-Present
Dispatcher Manager App

Q
Architectural - -
Final OS Final OS
ratncnls | Boot Loader | |Environment

| Security Driver - Transient | Run Time
(SEC) [nitialization Execution System Load RT
Environment (RT)

SWPC

18 |ntel Software Professionals Conference

e Essential difficulties — are due to a hard problem
e Accidental difficulties — caused by our approach

e Commonality Analysis — a method for
determining the members of a family

e Commonality — A feature common to a set of
programs

e Variability — A feature unique to a subset of
programs

SWPC intel)

19 |ntel Software Professionals Conference

Presenter
Presentation Notes
Essential & Accidental Difficulties: No Silver Bullet: Essence and Accidents of Software Engineering, Computer Magazine; April 1987, Frederick P. Brooks, Jr.,
http://www.virtualschool.edu/mon/SoftwareEngineering/BrooksNoSilverBullet.html

Commonality analysis: http://delivery.acm.org/10.1145/310000/302929/p671-ardis.pdf?key1=302929&key2=7168524521&coll=GUIDE&dl=GUIDE&CFID=55308061&CFTOKEN=21614617

e Program Family — A set of programs structured
based on their commonalities and variabilities

e SW Product Line — A set of programs constructed
from a common set of core elements

e Domain - a group of products with a well known &
generally accepted set of features.

SWPC intel)

20 |ntel Software Professionals Conference

e Swedish defense contractor

e Unable to meet commitments with existing
processes

e Company wide adoption of product line approach

e Included major reorg. & new processes to
maintain the

e Achieved 70-80% avg. reuse of system code
e Then was able to enter new markets

SWPC intel)

21 |ntel Software Professionals Conference

Presenter
Presentation Notes
Celsius Tech info from chapter 15 of: Software Architecture in Practice, Bass, Clements & Kazman, ISBN 0321154959, Addison Wesley, 2003

Other examples cited @ softwareproductlines.com
C++ firmware – hardware based object model at Sequent

But many examples are not disclosed in the literature since the approach is viewed as a competitive advantage

e Software Product Line Engineering, A Family-
Based Software Development Process, Weiss & Lai

e On the Design and Development of Program
Families, Software Fundamentals Collected Papers
of David Parnas

e Contact Information: lee.g.rosenbaum@intel.com

SWPC intel)

22 |ntel Software Professionals Conference

Presenter
Presentation Notes
On the Design and Development of Program Families, Software Fundamentals Collected Papers of David Parnas, Hoffman & Weiss, ISBN 0-201-70369-6, Addison Wesley, 2001
Software Product Line Engineering, A Family-Based Software Development Process, Weiss & Lai, ISBN 0-201-69438-7, Addison Wesley, 1999
Software Architecture in Practice, Bass, Clements & Kazman, ISBN 0321154959, Addison Wesley, 2003
No Silver Bullet: Essence and Accidents of Software Engineering, Computer Magazine; April 1987, Frederick P. Brooks, Jr.,
http://www.virtualschool.edu/mon/SoftwareEngineering/BrooksNoSilverBullet.html

http://www.softwareproductlines.com/�
http://www.pdx.edu/omse/courses�

e Co-author: Vincent Zimmer
e Reviewer: Lawrence Meadows

SWPC

23 |ntel Software Professionals Conference

	Software Reuse in BIOS using Program Families and Software Product Lines
	Legal Notices
	Agenda
	Executive Summary
	The Challenge:
	Planning for Reuse
	Overview of Program Families and Software Product Lines
	Product Line Development Process
	Reuse in the UEFI/PIWG Architecture
	Overlap of Product Line vs. Framework Principles
	Adoption & Successes 1
	Adoption & Successes 2
	Summary
	Lessons Learned
	Conclusions and Opportunities
	Backup
	Intel’s UEFI Framework Architecture
	Boot Flow
	Definitions
	Definitions
	Celsius Tech Product Line Example
	Additional Information
	Acknowledgements
	Slide Number 24

