
presented by

TrenchBoot and GRUB –
A Quick Introduction
UEFI 2020 Virtual Plugfest

June 16, 2020

Daniel Kiper, Oracle & Daniel P. Smith, Apertus Solutions

www.uefi.org 1



Meet the Presenter

2

Daniel Kiper 

Software Engineer 

Member Company: Oracle

www.uefi.org



Agenda

• TrenchBoot – What is it?

• TrenchBoot and UEFI Secure Boot

• TrenchBoot and GRUB – Why?

• GRUB - Current State and 
Challenges

• Questions?

• Documentation

www.uefi.org 3



TrenchBoot

www.uefi.org 4

• TrenchBoot is a cross-community integration project focused on 
launch integrity
• This means there is no “one thing” that is TrenchBoot

• The name was a play off of dealing with the muddy mess of trying to find 
a way to unify boot integrity

• The purpose is to develop a common, unified approach to building trust 
in the platform through launch integrity

• And to work with existing Open Source ecosystem to integrate the 
approach into their respective projects
• The intention here is to have a unified Dynamic Launch approach between Xen, 

KVM, Linux, BSD(s), and potentially proprietary kernels



Motivation

www.uefi.org 5

• The idea for TrenchBoot originated in 2014 dealing with the 
limitations of using tboot to launch Xen for the OpenXT project
• Access to the TXT TPM event log is blocked

• Conflict over access to the UEFI boot services

• Can only measure Multiboot modules that were loaded into memory by 
the bootloader

• Supports only one attestation action: predetermined the PCR manifest 
verification

• Only supports the Intel TXT, no love for AMD’s Secure Startup and other 
architectures and platforms



Motivation – Continuation

www.uefi.org 6

• Launch integrity is the foundation for platform security
• It deserves the attention needed to get it right and well integrated with 

Open Source

• In the past Dynamic Launch was under utilized
• It can in fact be initiated many times between power-on and power-off

• Each Dynamic Launch is an opportunity to establish the current integrity 
of the platform



Secure Launch for Linux

www.uefi.org 7

• TrenchBoot Secure Launch for Linux provides for different 
strategies to build trust in the platform
• First Launch – Establishing hardware rooted integrity during platform 

boot

• Runtime Launch – Establishing hardware rooted integrity during platform 
runtime, e.g.
• Secure Launch a kernel upgrade

• Secure Launch Integrity Kernel for runtime verification
• Integrity verification before executing a privileged operation

• Re-establishing platform state after sleep or hibernate

• Secure Launch Update/Shutdown kernel
• Reviewing platform state before platform reboot/shutdown

• Checking integrity before persisting state to disk



Who Contributes to TrenchBoot?

www.uefi.org 8



Terminology

www.uefi.org 9

Mapping concepts to TCG specification and vendor terms

Description TCG Intel TXT AMD-V

Process of starting a software environment at an 

arbitrary time in the runtime of a system

Dynamic Launch (DL) Late Launch Secure Startup

Platform dependent event that triggers the DL DL Event GETSEC[SENTER] SKINIT

Performs initial configuration actions that are platform 

specific before invoking DL Event

D-RTM Configuration 

Environment (DCE) 

Preamble

The Core Root of Trust for the DL environment that is 

initiated by a DL event and represented by the initial 

measurement

D-CRTM

Software/firmware that executes from the instantiation of 

the DL Event to the transfer of control to the DLME

D-RTM Configuration 

Environment (DCE)

Authenticated Code 

Module (ACM)

Secure Loader (SL)

Software executed after the DCE instantiated TCB is 

established

Dynamically Launched 

Measured Environment 

(DLME)

Measured Launch 

Environment (MLE)

Security Kernel (SK)



UEFI Secure Boot Trust

www.uefi.org 10

• The CRTM is not measured until 
during PEI

• Therefore SEC and PEI must be trusted

• CRTM is of SEC and PEI, thus it is self 
referential

• Relies on integrity of Boot Flash

• Relies on TPM to protect 
measurements

• The DXE phase enforces UEFI 
secure boot verification



UEFI Secure Boot Trust

www.uefi.org 11

• The CRTM is not measured until 
during PEI

• Therefore SEC and PEI must be trusted

• CRTM is of SEC and PEI, thus it is self 
referential

• Relies on integrity of Boot Flash

• Relies on TPM to protect 
measurements

• The DXE phase enforces UEFI 
secure boot verification



UEFI Secure Boot Trust

www.uefi.org 12

• The CRTM is not measured until 
during PEI

• Therefore SEC and PEI must be trusted

• CRTM is of SEC and PEI, thus it is self 
referential

• Relies on integrity of Boot Flash

• Relies on TPM to protect 
measurements

• The DXE phase enforces UEFI 
secure boot verification



Dynamic Launch Trust

www.uefi.org 13

• DCE Preamble may be a 
bootloader or an executing OS

• The CRTM is taken by the CPU
• Relies on the TPM to protect 

measurements

• On Intel there is also an additional 
authentication protocol between 
the DCE and CPU



Dynamic Launch Trust

www.uefi.org 14

• DCE Preamble may be a 
bootloader or an executing OS

• The CRTM is taken by the CPU
• Relies on the TPM to protect 

measurements

• On Intel there is also an additional 
authentication protocol between 
the DCE and CPU



Dynamic Launch Trust

www.uefi.org 15

• DCE Preamble may be a 
bootloader or an executing OS

• The CRTM is taken by the CPU
• Relies on the TPM to protect 

measurements

• On Intel there is also an additional 
authentication protocol between 
the DCE and CPU



The Control of a Dynamic Launch

www.uefi.org 16

• Provides a very controlled and protected startup
• The CPU obtains Locality 4 on the TPM and clears DRTM PCRs (17-22)

• All CPU interrupts (NMI, SMI, INIT, etc) are disabled

• The CPU protects the DCE from DMA access
• Intel uses Cache as RAM (CRAM)

• AMD uses Device Exclusion Vector (DEV)

• The DCE is measured by the CPU and stored in PCR 17 of the TPM before execution
• On Intel the ACM is authenticated before measurement

• On AMD the Secure Loader is owner provided

• The DCE ensures the DLME is DMA protected, measures, and then executes

• The result is a very high integrity assertion of the DLME
• Removes boot firmware from the TCB with the exception being the SMI Handler



Basic Flow of First Launch – Intel TXT

www.uefi.org 17



The GRUB History

www.uefi.org 18

• The project was initiated by Erich Boleyn in 1995

• It was an attempt to boot the GNU Hurd with the University of Utah’s Mach 
4 microkernel

• One of the outcomes of this efforts was the Multiboot Specification made 
by Erich Boleyn and Brian Ford

• Erich tried to implement the Multiboot Specification in FreeBSD boot 
loader but quickly realized that it was easier to write own bootloader from 
scratch

• This way the GRUB was born

• In 1999, Gordon Matzigkeit and Yoshinori K. Okuji adopted GRUB as an 
official GNU package



The GRUB History – Continuation

www.uefi.org 19

• Over the next few years, GRUB was extended to meet many needs

• However, it quickly became clear that its design was not keeping up with 
the extensions being made to it

• Around 2002, Yoshinori K. Okuji started work on PUPA (Preliminary 
Universal Programming Architecture for GNU GRUB), aiming to rewrite 
the core of GRUB

• The project PUPA was later renamed to GRUB2 and the original version of 
GRUB was renamed to GRUB Legacy

• The GRUB Legacy last release (0.97) was made in 2005

• Major GNU/Linux distributions migrated to GRUB2 between 2007 and 
2009

Based on https://www.gnu.org/software/grub/manual/grub/grub.html#History



The GRUB – Why is it the Bootloader of 
Choice? 

www.uefi.org 20

• The GRUB is the most common boot loader in deployment thus making it 
the choice initial boot loader to make capable of being a DCE Preamble 
for DL

• The GRUB is the most feature rich reach bootloader in the wild:
• It supports at least 24 variants of targets (architectures) including ARM, x86, IA64, 

MIPS, POWER, RISC-V, SPARC64 and platforms like e.g. UEFI

• It supports many filesystems including btrfs, ext2, ext3, ext4, F2FS, FAT, HFS, JFS, 
ReiserFS, SquashFS, romfs, NTFS, XFS, ZFS, LUKS, LUKS2

• It has many security and crypto features embedded including UEFI Secure Boot via 
shim_lock and TPM support

• It can start directly from ROM (coreboot)

• It supports network boot

• It has minimal shell capabilities which allow scripting

• And many more...



The GRUB and UEFI

www.uefi.org 21

• The GRUB works on all architectures which are capable of running UEFI

• Most UEFI features are supported by the GRUB

• The GRUB supports the UEFI Secure Boot via shim

• The GRUB supports measurements using the UEFI TPM calls

• The GRUB can load many different OSes which even sometimes do not 
support the UEFI at all

• The GRUB presents the unified interface to the user regardless of 
architecture and firmware

• The GRUB supports basic scripting which is very useful for automation

• The GRUB community is pretty active



The GRUB – Current Challenges

www.uefi.org 22

• We want to unify the UEFI Linux boot protocol for all targets

• ...and later for other OSes

• The GRUB has some long standing network boot problems on UEFI 
platforms due to issues with the SNP driver

• The project struggles with a shortage of reviewers from firmware and OSes 
side



Questions?

www.uefi.org 23



Documentation

www.uefi.org 24

• https://trustedcomputinggroup.org/wp-content/uploads/TCG_D-
RTM_Architecture_v1-0_Published_06172013.pdf

• https://trustedcomputinggroup.org/wp-content/uploads/DRTM-
Specification-Overview_June2013.pdf

• https://github.com/TrenchBoot/

• https://www.gnu.org/software/grub/

• https://lists.gnu.org/mailman/listinfo/grub-devel/



Thanks for attending the UEFI 2020 Virtual Plugfest

For more information on UEFI Forum and UEFI 
Specifications, visit http://www.uefi.org

presented by

www.uefi.org 25

http://www.uefi.org/

