presented by

=" Microsoft

UEFI Ecosystem Investments
and Open-Source Contributions

UEFI Fall 2023 Developers Conference & Plugfest
October 9-12, 2023
Presented by: Michael Kubacki (Microsoft)

www.uefi.org

Agenda

* Introduction

e Security

* Features

e Tests & Tools
 Future Investments
 Questions

www.uefi.org

Introduction

B
>|< tianocore .

Proje‘ct Mu

cck2 Open-Source
edk2-platforms mu_pasecore
edk2-pytool-extensions mu_tiano_plus

mu_plus
mu_tiano_platforms

edk2-pytool-library

“Core UEFI”

= Microsoft Azure = Windows

: . Microsoft
= Microsoft Security B Surface

www.uefl.org

https://www.tianocore.org/
https://microsoft.github.io/mu/

Open-Source Firmware Repos

v L 4 L 4 € L 4 L

mu_silicon

mu mu_devops mu_basecore - T mu_feature_config mu_tiano_platforms

arm_tiano - -

1 v v T v

) mu_silicon_)

mu_crypto_release mu_tiano_plus . _ mu_feature_dfci mu_oem_sample

intel_tiano - -

v [(4

mu_common_ o
mu_plus mu_feature_ipmi

min_platform

(4
mu_feature_

mm_supv

o Project Mu (microsoft.github.i10)

www.uefi.org

https://microsoft.github.io/mu/

WE'VE INSTALLED A WE'VE DEVELOPED A WE'VE INSTALLED A

TWO-KEY SYSTEM TO DUAL-TURNER DEVICE TWO-KEY LOCK ON

PREVENT ACCIDENTAL TO ALLOW A USER THE DUAL TURNER

MISSILE LAUNCHES. TO EFFICIENTLY TURN DEVICE TO PREVENT
} MULTIPLE KEYS. ACCIDENTAL USE.

e B Mk 4

=4 RE=IR

|

é

xkcd: Two Key System

Firmware Security

www.uefi.org

https://xkcd.com/2677/

Overview

“Firmware Vulnerabilities as a Percentage of New Vulnerabilities Added to the NVD”

3.98

=16
i
0.84 - ‘ s
I I I

2005 2006 2007 2008 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Source: NIST NVD, 3/17/21

Takeaway: This is worse

Source: DHS CISA Strategy to Fix Vulnerabilities Below the OS Among Worst Offenders

www.uefi.org

https://static.rainfocus.com/rsac/us21/sess/1602603692582001zuMc/finalwebsite/2021_US21_TECH-W13_01_DHS-CISA-Strategy-to-Fix-Vulnerabilities-Below-the-OS-Among-Worst-Offenders_1620749389851001CH5E.pdf

Recent Security Focus Areas

Attackers are increasingly focusing on firmware

Memory Protections
Reduce MM Attack Surface

Reduce UEFI gap to other system software Reduce MM memory access

Address UEFI ecosystem compatibility challenges Eliminate excessive DXE coupling
Launch MM earlier in boot

Code Correctness Build an open-source MM supervisor

Leverage CodeQLl to identify implementation bugs
Secure Boot

OS Runtime Address limited revocation space
Coordinate certificates nearing expiration

Expand usage of policy for UEFI variables Evolve 3" Party UEFI CA signing requirements
Explore SMM alternatives Plan for the future

www.uefi.org

System Management Mode (SMM)

SMM - A special-purpose operating mode in x86 architecture used to monitor and
manage various system resources and perform manufacturing tasks.

OEM Code

Platform-specific

Sensitive Code Firmware Handling
Isolated execution of System Events

Power

functionality that
persists into OS runtime

environment Hardware

Management

Thermal

e Main benefits:

— Provides a distinct & easily isolated processor environment
— Operates transparently to the OS & software applications

e SMM is entered via a System Management Interrupt (SMI)

www.uefi.org

Containing MM

1.

Enable memory protections

Protect against buffer overflow, stack overflow,
overwriting code sections, etc.

See “UEFI Memory Protections” presentation.
Effort to enable: Medium

SMM drivers: Follow best practices

Use communicate buffers, validate input, reduce
memory map exposure to SMM, etc.

Effort to enable: Low

SMM core: Use Standalone MM

Prevent “SMM callouts”.
Load MM core earlier.
Effort to enable: Medium

Enable an MM Supervisor

Reduce capabilities of MM code to what is required.

Effort to enable: Medium - High

[BRLY-2021-021] The stack buffer overflow vulnerability leads to arbitrary code execution in UEFI DXE driver on

BullSequana Edge server. (binarly.io)

The vulnerability exists due to incorrect use of the gRT->GetVariable() service:

followed by execution of arbitrary code

[BRLY-2021-011] SMM memory corruption vulnerability in combined DXE//SMM driver on Fujitsu device

(SMRAM write). (binarly.io)

However, the following checks are missing:
» checking the size located at *(CommBuffer + 3)

Jility, it is essential to wrap all the input pointers (including the nested pointers) for
SMI handlers with sanity checks to make sure they are not pointing into SMRAM and add a check for
the size located in * (CommBuffer + 3).

[BRLY-2021-008] SMM callout vulnerability in SMM driver on Fujitsu device (SMM arbitrary code execution).

(binarly.io)

www.uefi.org

https://www.binarly.io/advisories/BRLY-2021-021/index.html
https://www.binarly.io/advisories/BRLY-2021-011/index.html
https://www.binarly.io/advisories/BRLY-2021-011/index.html
https://www.binarly.io/advisories/BRLY-2021-008/index.html
https://www.binarly.io/advisories/BRLY-2021-008/index.html

Traditional MM Standalone MM

System Boot

System Boot

PeiCore loads PiMmIpl Initialize
PiMmIpl MMRAM

DxeCore loads PiSmmlpl Initialize
PiSmmipl SMRAM

Standalone MM
Coreruns inside
MMRAM

PeiCore loads other
PEI drivers

PiSmmCore runs
inside SMRAM

Standalone MM
DXE phase drivers foundation loads
other MM drivers

DxeCore loads other . PiSmmCore loads
DXE drivers other SMM drivers

OnIy|MMI

Ready to lock event Ready to lock event

Ready to lock event Waiees 2 Ready to lock event

[Early Boot Phase
I Late Boot Phase

More MM I events
during runtime

B MMI Environment rd off 10 05 More SMI events

during runtime

Hand off to OS

www.uefi.org

Standalone MM - Protocol Access

Traditional MM Initialization Standalone MM Initialization
UEFI MM
= Boot Services = MM Services
= DXE Services = MM protocols

= Runtime Services
= DXE protocols

MM

= MM Services Note: Drivers do not have access to interfaces

= MM protocols outside the MM environment.
Traditional MM Runtime Standalone MM Runtime

MM MM

= MM Services = MM Services

= MM protocols = MM protocols

Note: Drivers do not have access to interfaces
outside the MM environment.

www.uefi.org

MM Supervisor

MM Supervisor - A kernel like module that operates in Standalone MM
mode with policy-based resource access restrictions.

Performs the responsibilities of PiSmmCore and PiSmmCpuDxeSmm:
e [nitial MM environment setup
e Memory management
Standalone MM driver dispatching
MMI handlers dispatching

Provides the following unique features:
* Customizable Security Policy (Open-Source Python tools)
e PEI Launch Capability

Return to boot

* Privilege Separation for Resource Access Operations code/

rsm to runtime code

=

www.uefi.org

e Memory Isolation

o microsoft/mu feature mm supv - MM Supervisor

Transition to CPL3
through callgate

Invoke syscall

Meet Policy
Requirement?

Yes

Re-execute from
CPLO

Continue execution
in CPL3

Maore handlers/
modules?

Transition back to

B CPLO Operations

B CPL3 Operations

Error handling

routine to report
telemetry

CPLO through
callgate

https://github.com/microsoft/mu_feature_mm_supv

UEFI Variable Policy

e Code should implement strict UEFI variable protections using variable policy.

e All UEFI variables that are no longer consumed should be locked as soon as
possible during boot.

« UEFI variables should enforce that variable attributes are set to expected
values.

Exploitation

« Build payload
» Write onto NVRAM (via SMM if hardened security or RT if common security)

« Craft the ‘NvramMailBox’ EFI Variable so its second QWORD will point to the payload
inside NVRAM and with attributes to lock it for boot phase

Source: Data-Only Attacks Against UEFI BIOS

More Information: UEFI Variable Policy Whitepaper - Project Mu (microsoft.github.io)

Tianocore Variable Lock to Variable Policy Transition Documentation:
VariablePolicy Protocol Enhanced Method for Managing Variables - tianocore/tianocore.qithub.io Wiki

www.uefi.org

https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Include/Protocol/VariablePolicy.h
https://github.com/flothrone/smm/blob/main/ZN2021%20Dataonly%20attacks%20BIOS%20-%20Ermolov.pdf
https://microsoft.github.io/mu/dyn/mu_tiano_platforms/MU_BASECORE/MdeModulePkg/Library/VariablePolicyLib/ReadMe/
https://github.com/tianocore/tianocore.github.io/wiki/VariablePolicy-Protocol---Enhanced-Method-for-Managing-Variables

Firmware Features

www.uefi.org

ITTOOK A LOT OF WORK, BUT THIS
LATEST LINUX PATCH ENABLES SUPPCRT
FOR MACHINES WITH Y096 CPUs,
LPFRJI‘HHEWLIHFFDFJQ?H

DO YOU HAVE SUPFCRT EOR SMOOTH
FULL-SOREEN FlASH VIDED YET?

NG, BU'I’LJHO USES 7HAT7

£

xkcd: Supported Features

https://xkcd.com/619/

Platform Runtime Mechanism (PRM) @'?ﬂ

Due to the diverse application of SMM, an incremental approach is taken to reduce its usage.

Begin by classifying SMls:
Coegoy oeserpion —————————eamie

1 Software SMI handlers that do not require SMM Address translation
privileges
From System Physical Address (SPA) to DIMM Address (DA)
2 Software SMI handlers that require SMM privileges UEFI Authenticated Variables, UEFI Capsule Update
3 Hardware SMI handlers that do not require SMM Memory error correction handling
privileges
4 Hardware SMI handlers that do require SMM privileges CPU hot add and remove

Note: SMM privileges means certain hardware resources such as registers can only be accessed from SMM execution context.

We can most easily eliminate SMI handlers that do not depend upon SMM privileges.

www.uefi.org

Platform Runtime Mechanism (PRM) @’fﬂ

Introduces the capability to move SW SMI handlers (Category 1) and a sub-set of

HW SMI handlers (Category 3) that do not require SMM privileges out of SMM and
into OS/VMM execution context.

It is common for Category 1 SW SMI to occur from a _DSM in ACPI.

This means:
1. PRM is backward compatible with this interface

2. PRM can leverage this abstraction to substitute _DSM -> SMI with _DSM -> PRM
3. At a high-level, an SMI handler becomes a PRM handler

www.uefi.org

PRM Invocation

Two types of invocation:

1. Direct — A PRM aware OS driver calls
into the ACPI Bridge driver directly to
invoke a PRM handler.

OS Driver OS Driver

New option for
PRM aware OS
and drivers

PRM
OpRegion ACPI/Bridge

ASL Methods :
Driver

(e.g _DSM) 2. ACPIl— An OS driver continues to call

a _DSM which is implemented to

HaPanI\I/;rs invoke a PRM handler by writing to a
PRM OpRegion instead of triggering a

ddrosses | software SMI.
resses ‘egacy PRM Handlers in Lieu
usage models based PRM Infrastructure
. . of SMI Handlers
on _DSM invocation

* PRM modules are PE/COFF binaries that list their PRM handlers in an export table.
 PRM handlers are discoverable within a module by both firmware and operating systems.
« PRM modules can be updated at OS runtime (independent of UEFI firmware).

PRM Specification: Platform Runtime Mechanism (uefi.org)
PRM Firmware Code: edk2/PrmPkg - tianocore/edk?2 (github.com)

www.uefi.org

https://uefi.org/sites/default/files/resources/Platform%20Runtime%20Mechanism%20-%20with%20legal%20notice.pdf
https://github.com/tianocore/edk2/tree/master/PrmPkg

Firmware Policy

A flexible way for platforms to define and manage
configuration data.

. Policy — An opaque data block.
— Ident|f|Ed by GUID Policy Producer
— Controlled by attributes

— Useful for data passing across ownership
boundaries (e.g. platform to silicon).

— Can control dispatch order on policy
presence.

Policy Consumer

Policy Library

. Policy Service — Pl-phase independent interfaces
to:

— Get/Set/Remove policies

— Register & Unregister for policy events
. E.g. addition, modification, or removal

— Work with “verified policies” S
. Data access via generated accessor functions

. Checks data access details such as size and
version between consumers and producers.
www.uefi.org Q PolicyServicePkg - microsoft/mu_basecore (github.com) 18

Policy PPI Policy Protocol

https://github.com/microsoft/mu_basecore/tree/HEAD/PolicyServicePkg

T WAS TRYING To | TURNS OUT IT WASNT | DEBUGGING 74T LED | | ANYWAY, LONG STORY SHORT,
FIGURE OUr WHY | THE BROWSER-THE | ME T© A MYSTERIOUS | | T FOUND THE SWORD OF

MY BROUWSER LJAS | ISBUE WAS UITH MY | ERROR MESSAGE. FROM T’hRTNTrELHRRlDR
ACTNG WEIRD | KE/BOARD DRVER. | A SysTEM UTILITY,

- T THINK AT SOME
) POINT THERE YOU
)) :umm) PUZZLES,

W

xkcd: Debugging

Test & Debug Tools

www.uefi.org

https://xkcd.com/1722/

UEFI 3@ Party CA PE/COFF Tests

Microsoft 3™ Party UEFI CA memory mitigation requirements added November
30th, 2022:

1. Page aligned sections. For example, 4KB or a larger power of 2 (64KB).
Section flags must not combine IMAGE_SCN_MEM_WRITE and IMAGE_SCN_MEM_EXECUTE for any
given section.

3. If targeting NX compatible firmware, DLL Characteristics must include
IMAGE_DLLCHARACTERISTICS _NX_COMPAT

PE/COFF Image Validation Tool

The PE/COFF image validation tool is a command line tool used to verify that memory protection requirements such as section alignment and
write / execute settings are applied correctly. This tool also provides the ability to check, set, and clear the NX_COMPAT flag found in

OPTIONAL_HEADER.DIICharacteristics.

Synopsis

image_validation.py [-h] -i FILE [-d] [-p PROFILE] [--set-nx-compat | --clear-nx-compat | --get-nx-compat]

o image validation - tianocore/edk2-pytool-extensions (github.com)

www.uefi.org

https://techcommunity.microsoft.com/t5/hardware-dev-center/new-uefi-ca-memory-mitigation-requirements-for-signing/ba-p/3608714
https://github.com/tianocore/edk2-pytool-extensions/blob/master/docs/user/tools/using_image_validation_tool.md

events:

- type: EV_S_CRTM_VERSION
description: "Descriptions are optional. Hash the UTF-8 string with SHA256 in PCR@."
e a o ’
hash:

- sha256
- sha384

Example event data

Replays a custom event log for testing |[e—_—"—"

description: "Descriptions are optional. Hash the UTF-16 string with null character data with SHA256 & SHA384 in PCR@."
° pc 5]
operating system features dependent [ss
- sha256
- sha384

on measurements.

encoding: utf-16
include_null_char: true
value: |-

More example data

. L]
type: EV_S_CRTM_VERSION
b EXCI u S Ive CO nt rO| Ove r PC R d IgeStS de;:ripti-;\n‘: ”Descr“ipltions are optional. Hash the UTF-8 string with SHA256 in PCR7."

pcr: 7
hash:
- sha256

e Easy conversion between JSON/YAML and st

valu |-

L]
bl na ry eve nt Iogs Data in PCR7 to prevent UEFI var measurements

S_CRTM_VERSION
on: "Descriptions are optional. Use a pre-hash SHA256 value. Event data is a UTF-16 string without a null characte

o J S O N S C h e m a t h a t m a ke S it e a Sy to " a ; "@xF97326281EABDIASB64ADD75754035516504BEDIA35B13126ED36D3A9F28A10AB™
e: string

understand input format and validate logs R

value: |-

Some more example data

type: EV_NO_ACTIO
description: ™ riptions are optional. Hash the base64 data with SHA256 and SHA394 in PCR6."

e Logs can be passed through FFS file, UEF| [

hash:

variable, or QEMU FW CFG

O TpmTestingPkg/TpmReplay - microsoft/mu plus (github.com) e

www.uefi.org

https://github.com/microsoft/mu_plus/tree/release/202302/TpmTestingPkg/TpmReplayPei

Uncontrolled data used in OS command S CodeQL is open-source and
© open free for open-source
BaseTools/Source/C/VfrCompile/VfrCompiler.cpp:648 p roj e Ct S [

rcat (PreProcessCmd, mOptions.VfrFileName), s t (PreProcessCmd, " >

strcat (PreProcessCmd, mOptions.PreprocessorOutputFileName);

if (em (PreProcessCmd) != @) { release /202302
e 3

: ent to an 0S5 command is derived f de rously concatenated int M
i g s P m—— b Uses a semantic code

argument command is derived from , dangerously concatenated into - . .

and then passed to system(_Command). a n a IyS I S e ngl n e to d Iscove r
argument £ command is derived from , dangerously concatenated into

, and then passed to system(_Command). b e

argument : command is derived from , dangerously concatenated into V u | n e ra b I I It I es °

and then passed to system(_Command).
argument E: command is derived from , dangerously concatenated into

and then passed to system(_Command).
argument command is derived from , dangerously concatenated into

E e e em(_t Ja .
argument z cZ::a:zp::‘::iz:e;ofizztnm e , dangerously concatenated into ® CO d e QL q u e rl e S a re O p e n -

and then passed to system(_Command).

argument E Vcommand is derived from , dangerously concatenated into SO u rce a n d easy tO Write .

and then passed to system(_Command).
argument command is derived from , dangerously concatenated into

, and then passed to system(_Command).

or (NULL e p—— “failed t 1 C preproce on VFR i PreProcessCmd) ; * Ca n be ru n in CI a nd Ioca I Iy
Fail; With the COdeQL CLl.

Tool Rule ID Query

CodeQL cpp/command-1line-injection View source

e |Integrated with GitHub Code

The code passes user input as part of a call to system or poepen without escaping special elements. It generates a command line using

sprintf , with the user-supplied data directly passed as a formatting argument. This leaves the code vulnerable to attack by command Sca n n I n g a n d I D E S | I ke VS

injection.

Code.
O CodeQL (github.com)

www.uefi.org

https://codeql.github.com/

Future Investments

www.uefi.org

Rust

We see value in Rust as a viable alternative to C for UEFI firmware.

Brings:
. Memory safety with no garbage collector
. Productivity improvements
— High-level multi-paradigm concepts such as generics and traits
— An official package management system with first-class support for formatters and linters
— Ability to produce and consume crates with a broader community of developers increasing overall
development velocity
Status:
. Integrated Rust build support in the edk2 build environment

— Including containers that are regularly tested in Cl
— Including Rust unit testing and code coverage support

. Started publishing crates in several Project Mu repos
. Demonstrated UEFI Rust (DXE) driver execution in QEMU

Currently: Porting more code to Rust
O Rust - Project Mu (microsoft.github.io)

www.uefi.org

https://microsoft.github.io/mu/WhatAndWhy/rust/

Firmware Database

Edk2DB — A tool that builds a sqlite3 database from o
an edk2 workspace. o=

. Generates databases that can be shared.

. “Parsers” are registered into a generic framework to build

the database.

. Includes built-in parsers for:
— Workspace Environment — Env vars, Git repo context, etc. ﬂj“*“T
— Source code — source code files (C, asm, etc.) ¢ component : text
_ Modules — Metadata from INF files - ::::‘::‘r‘“r
- Instance info — Active library and component instances (DSC) > BB junction R
- FV info — Component and size info for a given (FDF) LJ:S#

www.uefi.org O features/edk2 db - tianocore/edk2-pytool-library (github.com)

https://github.com/tianocore/edk2-pytool-library/blob/master/docs/user/features/edk2_db.md

Firmware Database Tooling

Off-the-shelf and custom tools help provide data insight.

Generic Sqlite3 Tooling
. VSCode extensions (SQLite, SQLite Viewer)

. Command line (SQLite CLI, sqglite-analyzer)
. Applications (SQLiteStudio, SQLite Expert) : Frf“ﬂfﬂfblﬂ .
Edk2DB Tooling (Reports and Queries) Dependencies Between INF Files

e By-INF code coverage

e Recursive INF dependency graph
e Platform usage report

e Others

www.uefi.org o features/edk2 db - tianocore/edk2-pytool-library (github.com) FA%)

https://github.com/tianocore/edk2-pytool-library/blob/master/docs/user/features/edk2_db.md

Code Coverage

— BaseMemoryLib.inf 151 113 264 1131 57.1% I
CompareMemWrapper.c 8 1 9 61 66.8% .
CopyMem.c 77 0 if 148 100%
CopyMemWrapper.c 9 0 9 29 100%
MemLibGeneric.c 10 58 63 307 14.7%
MemLibGuid.c 12 18 30 167 40% N
SetMem.c 24 1 25 80 96% I
SetMem16Wrapper.c 0 g 9 58 0% I
SetMem32Wrapper.c 0 9 9 28 0% I
SetMemB4Wrapper.c 0 9 9 58 0% I
SetMemWrapper.c 9 [12 85 41.6% I
ZeroMemWrapper.c 6 1 [20 85.7% I

Code Coverage Per INF

Www_uefi_org Q features/edk2 db - tianocore/edk2-pytool-library (github.com) 27/

https://github.com/tianocore/edk2-pytool-library/blob/master/docs/user/features/edk2_db.md

Platform Usage Report

Library Usage Per Package

Component Usage Per Package

Build Information

Platform: OvmfPkg/OvmiPkgla32X64.dsc
Target: DEBUG

Architectures: I1A32 X64

Toolchain: GCC5

Commit Sha: f36e1ec1f0a5fd3be84913209181d7813444b620

0.633%

B MdeModulePkg B MdePkg

B OvmfPkg B OvmfPkg

B MNetworkPkg B MdeModulePkg

B UefiCpuPkg B ShellPkg

[ShellPkg I UefiCpuPkg

I FatPkg B NetworkPkg

B PcAtChipsetPkg B CryptoPkg
EmbeddedPkg

PcAtChipsetPkg

Components and Libraries From Other Packages

www.uefi.org o features/edk2 db - tianocore/edk2-pytool-library (github.com)

https://github.com/tianocore/edk2-pytool-library/blob/master/docs/user/features/edk2_db.md

Virtual Platforms

All the features covered are integrated in these easy-to-
use virtual platforms (derived from OvmfPkg):

o 0QemuQ35Pkg — IA32/X64 development
 QemuSbsaPkg — AARCHG64 development

Includes support for:

» Advanced debug logging capabilities

e CodeQL

* Device Firmware Configuration Interface (DFCI)
 Firmware Config & Policy

« Graphical front-page w/ on-screen keyboard
MM Supervisor (with PEI launch)

o Platform Runtime Mechanism (PRM)

* Rust integration

o Telemetry / WHEA reporting

« TPM Replay

« Utility apps — Paging audits, UEFI variable policy info, ...
 UEFI debugger extension (WinDbg extension)
 UEFI memory protections

« UEFI variable policy

QR - Pross Ctrl + Al + G bo releass grab

Maching Vi

@ Project MU

PG information

PC information

Seourity
Madel Srandard W * IE% 2009)

Boot confiqurati System LULID
renteil et Serial number

Managoment Aasel tag

Exit :
Firmware

O Project Mu Virtual Platform Firmware (github.com)

www.uefi.org

https://github.com/microsoft/mu_tiano_platforms/tree/main/Platforms/QemuQ35Pkg
https://github.com/microsoft/mu_tiano_platforms/tree/main/Platforms/QemuSbsaPkg
https://github.com/microsoft/mu_tiano_platforms

Thanks for attending the UEFI Fall 2023
Developers Conference & Plugfest

For more information on UEFI Forum and UEFI
Specifications, visit http://www.uefi.org

presented by

=" Microsoft

www.uefi.org

http://www.uefi.org/

	UEFI Ecosystem Investments�and Open-Source Contributions
	Agenda
	Introduction
	Open-Source Firmware Repos
	Firmware Security
	Overview
	Recent Security Focus Areas
	System Management Mode (SMM)
	Containing MM
	Standalone MM
	Standalone MM – Protocol Access
	MM Supervisor
	UEFI Variable Policy
	Firmware Features
	Platform Runtime Mechanism (PRM)
	Platform Runtime Mechanism (PRM)
	PRM Invocation
	Firmware Policy
	Test & Debug Tools
	UEFI 3rd Party CA PE/COFF Tests
	TPM Replay
	CodeQL
	Future Investments
	Rust
	Firmware Database
	Firmware Database Tooling
	Code Coverage
	Platform Usage Report
	Virtual Platforms
	Slide Number 30

