
presented by

UEFI Firmware
Security Concerns and Best Practices

UEFI Security Resources - July 2018

Jim Mortensen & Dick Wilkins, PhD
Phoenix Technologies, Ltd.

1 UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

Legal Stuff

Copyright © 2017-2018 Phoenix Technologies Ltd. All rights reserved.

PHOENIX TECHNOLOGIES LTD. MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WITH RESPECT TO THE INFORMATION HEREIN
DESCRIBED AND SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE OR NON-
INFRINGEMENT. FURTHER, PHOENIX TECHNOLOGIES LTD. RESERVES THE
RIGHT TO REVISE THIS DOCUMENTATION AND TO MAKE CHANGES FROM
TIME TO TIME IN THE CONTENT WITHOUT OBLIGATION OF PHOENIX
TECHNOLOGIES LTD. TO NOTIFY ANY PERSON OF SUCH REVISIONS OR
CHANGES.

UEFI Security Resources – July 2018 2 Copyright © 2017-2018 Phoenix Technologies Ltd.

Contents

• Introduction
• Security Landscape
• Threats and Mitigation Guidelines
• Additional Concerns
• Validation Guidelines
• Next Steps
• Questions

UEFI Security Resources – July 2018 3 Copyright © 2017-2018 Phoenix Technologies Ltd.

Introduction

4 UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

This Content

• The material provided here is at the request of
the UEFI Forum

• It is an update of presentations at the 2014
and 2015 Spring UEFI plugfest events

• A further update of this material was
presented at the October 2017 plugfest

5 UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

Introduction

• UEFI firmware is now widely deployed and has become a
target for hackers and security analysts/researchers

• Poor implementations affect the credibility of the UEFI
“brand” and market perception of all implementations

• As with all software implementations, there are going to
be faults - (Phoenix is not perfect, even if we want to be)

• Phoenix would like to share some of our best practices in
the interest of raising the quality and security of all UEFI
implementations

6 UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

Introduction

Firmware is software, and is therefore vulnerable
to the same threats that typically target software

• Maliciously crafted input

• Elevation of privilege

• Data tampering

• Unauthorized access to sensitive data

• Information disclosure

• Denial of Service

• Key Management

• Etc.

7 UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

Introduction

Firmware-Specific Threats
• Maliciously crafted input – Buffer overflows to inject malware

• Elevation of privilege – SMM code injection

• Data tampering – Modifying UEFI variables (SecureBoot, Configuration, etc.)

• Unauthorized access to sensitive data – Disclosure of SMRAM contents

• Information disclosure – SMM rooted malware; “secrets” left in memory

• Denial of Service – SPI flash corruption to “brick” the system

• Key Management – Private Key Management for signed capsule updates

8 UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

Introduction

We Are All At Risk!

Disclosures regarding UEFI BIOS security vulnerabilities look bad for the
whole UEFI community!

So how do we protect against UEFI Firmware attacks?

9 UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

Security Landscape

10 UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

Security Landscape

First Let’s Talk About the Boot Process

11 UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

12

Security Landscape
SPI Flash
• SPI flash part is mapped to the top of the 32-bit

address space (for x86 platforms)

• BIOS flash-region is at the top of SPI flash

• Reads are forwarded by the chipset to the flash
device

• At power-on, the processor fetches its first
instruction from 16-bytes below 4GB

• The instruction at 0xFFFFFFF0 is a JMP
instruction to the start of the UEFI platform
initialization code (SEC phase)

FFFFFFFF

FFx00000

4GB Bound (232)

FEExxxxx

E0000000

~80000000 2GB

00100000 1MB

00000000 IVT

BIOS Flash

APIC Decode

PCI Express

Configuration

Space

Empty

Address

Space

Extended

Memory,

1st 64KB

High Memory

Area
Low Address Space

Upper Memory Area

Low

Memory

Top of

Extended

Memory

Huge Memory

Memory

Mapped

Hardware

Empty

Address

Space

SPI

Flash

UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

13

Security Landscape
> 0xFFFFFFFF

SPI Flash
• FV_Recovery firmware volume (FV) contains the Boot Block: SEC

and PEI phase code

• Microcode updates and other resources are contained in other
FVs

• Variable store for UEFI Variables and default settings is
contained in another FV

• FV_MAIN contains the compressed UEFI drivers and remaining
UEFI code

• An actual flash image layout may split these into multiple FVs,
and contain additional FVs for custom and platform-specific
code and data < 0xFFFx0000

FV_Recovery

uCode Updates; other r

esources

FV_MAIN

Variable Store

Address Space

UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

14

Security Landscape
Boot Process
• SEC Phase sets up the UEFI environment and passes control

to PEI Core

• PEI Dispatcher dispatches PEI Modules (PEIMs) that perform
early hardware and memory initialization

• All pre-memory PEIMs run in place in the address space, i.e.,
from the flash part

• When memory is ready, DXE IPL is dispatched to
decompress FVMAIN into memory

FV_Recovery

PEI

Dispatcher

PEIM

PEIM

PEIM

SecMain

DXE IPL

UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

15

Security Landscape
Boot Process
• DXE IPL decompresses FV_MAIN into real memory

• PEI Core passes control to DXE Core (Driver Execution
Environment)

• DXE Dispatcher dispatches DXE and Runtime (RT) drivers from
FV_MAIN into memory

• DXE drivers perform additional hardware initialization and
configuration

FV_Recovery

resources

FV_MAIN

Variable Store

Address Space

DXE IPL

FV_MAIN

DXE

Dispatcher

DXE Driver

DXE Driver

RT Driver

SPI

Flash

UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

16

Security Landscape
SMM and Runtime Services
• A platform-specific driver configures SMRAM and launches the

SMM Core

• SMM Dispatcher dispatches SMM drivers from FV_MAIN into
memory

• Some SMM drivers install SMI handlers

• Some RT drivers install services callable by the OS at Runtime

• DXE drivers are unloaded after OS boot, leaving only RT and
SMM drivers at runtime

Address Space

FV_MAIN

DXE

Dispatcher

DXE Driver

RT Driver

Runtime

Service

SMRAM

SMM

Dispatcher

SMM Driver

SMM Driver

UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

17

Security Landscape
Runtime Service Exploit
• Legitimate Runtime Service source code in memory can be

modified by Ring 0 malware

• OS-level callers to the runtime service inadvertently call
malicious code

• HOWEVER – runtime services are pre-defined and limited in
scope, and so can do no real damage to a system that could not
already be done by Ring 0 malware (no escalation of privilege)

• Malware in memory is transient and upon reset will be
overridden with legitimate code from flash

FV_Recovery
resources

FV_MAIN

Variable Store

Address Space

FV_MAIN

DXE

Dispatcher

DXE Driver

DXE Driver

RT Driver

Runtime

Service

SPI

Flash

Reclaimed at
OS Runtime

UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

Runtime Services exploits are not a major threat to UEFI
because they will not provide an escalation of privilege

Runtime Services can be a major threat to an OS because
injected malware would run in the context of the OS Kernel

18

Security Landscape

UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

http://blog.frizk.net/2017/01/attacking-uefi-and-linux.html

Security Landscape

UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

Threats and Mitigation Guidelines

20 UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

Threats and Mitigation Guidelines

Key areas for concern
• Firmware Flash Regions

• UEFI Variables in Flash

• Capsule Updates

• SMM

• Secure Boot

• Option ROMs

21 UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

Threats and Mitigation Guidelines

Many organizations have provided disclosures of known
issues and guidelines for developing more secure firmware

Examples come from Intel, Microsoft, Mitre, NIST, Linux
distros and others. Some are public and some are available

only under NDA via direct communications with the
involved companies

22 UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

Threats and Mitigation Guidelines

Key areas for concern
• Firmware Flash Regions

• UEFI Variables in Flash

• Capsule Updates

• SMM

• Secure Boot

• Option ROMs

23 UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

Threats and Mitigation Guidelines

Malware injected into the address space is transient,
and will be cleaned up on the next boot

Malware injected into the firmware flash regions is
persistent, and will run on every subsequent boot

24 UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

25

Threats and Mitigation Guidelines

SPI Flash Exploit
• All PEIMs in flash are mapped to the address space as a

part of FV_Recovery

• An attacker with write-access to flash can inject
malware into the firmware

• Malicious PEIMs can disallow flash updates, or cause
destructive behavior (e.g., ‘brick’ the system)

• Malicious DXE drivers can disable security settings and
install malicious code into the OS

• Malware in flash is persistent, and survives OS reinstall
and hard drive reformat

FV_Recovery
resources

FV_MAIN

Variable Store

Address Space

FV_MAIN

DXE

Dispatcher

DXE Driver

DXE Driver

DXE Driver

Runtime

Service

SPI

Flash

Hard drive

UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

Threats and Mitigation Guidelines

26

• All flash Lock bits must be appropriately set
prior to running any untrusted code

• If flash writes are protected via SMI
handlers, all SMM protection bits must also
be appropriately set

• All Protected Range registers that block
writes to flash address space must also be
appropriately set and locked

UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

Threats and Mitigation Guidelines

27

On resume from S3:
• All flash Lock bits must be appropriately set

prior to running any untrusted code

• If flash writes are protected via SMI
handlers, all SMM protection bits must also
be appropriately set

• All Protected Range registers that block
writes to flash address space must also be
appropriately set and locked

UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

Threats and Mitigation Guidelines

28

On resume from S3
• Scripts that re-initialize the platform must

be secured against malicious modifications

UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

Threats and Mitigation Guidelines

Key areas for concern
• Firmware Flash Regions

• UEFI Variables in Flash

• Capsule Updates

• SMM

• Secure Boot

• Option ROMs

29 UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

Threats and Mitigation Guidelines

EDKII Variable Services
• Added to UDK on Dec 10, 2010

• Modified Jul 12, 2012 to fix a security issue

• Additional security fixes:

30

• Jul 17, 2012 • May 6, 2013

• Sep 12, 2012 • May 20, 2013

• Apr 18, 2013 • Jul 11, 2013

• Apr 25, 2013 • Feb 2, 2015

UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

Threats and Mitigation Guidelines

Many vulnerabilities in EDKII Variable services have been
fixed long ago

– YET recent presentations and disclosures indicate there
are many currently shipping systems that have not

implemented some of these security measures

31 UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

Threats and Mitigation Guidelines

32

• Ensure that all patches have been applied
to Variable Services drivers

• Review custom implementations for similar
vulnerabilities that have been patched in
the core implementation

UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

Threats and Mitigation Guidelines

OEMs and ODMs want to be able to modify variables after
boot in manufacturing

• Adding security controls to these variables needs to be managed carefully to not
break critical manufacturing infrastructure

• Regardless of OEM/ODM manufacturing needs, critical system variables must still
be protected

Consider adding extra variable integrity and validity checks
on critical values to prevent “bricking” of systems should a
value be improperly changed

33 UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

Threats and Mitigation Guidelines

34

• Lock Authenticated Variable regions as early
as possible

• Separate integral configuration and
security-based variables from those
expected to be modified at runtime

• Reduce permissions to only what is needed
• Remove RT access for POST-time variables
• Set variables as Read-Only if they are not

intended to be modified at runtime

UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

Threats and Mitigation Guidelines

Key areas for concern
• Firmware Flash Regions

• UEFI Variables in Flash

• Capsule Updates

• SMM

• Secure Boot

• Option ROMs

35 UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

Threats and Mitigation Guidelines

Secure Capsule Updates rely on proper signing, private key
management, validation, and rollback protection

• NIST SP 800-107 provides guidelines for hash algorithm usage
• NIST SP 800-57 provides guidelines for key management
• NIST SP 800-147(b) provides guidelines for secure BIOS Updates
• NIST SP 800-193* provides general firmware resiliency guidelines,

including firmware update mechanisms

* draft May 2017

36 UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

Threats and Mitigation Guidelines

37

• Ensure that all patches have been applied
to Capsule Update drivers

• Review custom implementations for similar
vulnerabilities that have been patched in
the core implementation

• Enforce Signed Capsule Updates
• Enforce Rollback Protection
• Use an HSM or Signing Authority for private

key protection

UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

Threats and Mitigation Guidelines

Key areas for concern
• Firmware Flash Regions

• UEFI Variables in Flash

• Capsule Updates

• SMM

• Secure Boot

• Option ROMs

38 UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

What is SMM?
• Highly privileged processor mode

• Entered through a System Management
Interrupt (SMI)

• Processor saves its context, services the SMI,
then restores context and resumes

• SMM code has full visibility of all address
space and devices

• Transition is transparent to the rest of the
system

39

Threats and Mitigation Guidelines

OS

Application

OS

Application

OS

Application

3rd Party Driver 3rd Party Driver

3rd Party Driver 3rd Party Driver

OS Kernel

Hypervisor

SMM

Ring 3

Ring 2

Ring 1

Ring 0

Ring -1

Ring -2

UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

What is SMRAM?
• Is only accessible within an SMI

• “Invisible” to the OS and OS software

• Contains SMI handlers and related code

• May contain “security secrets” and “sensitive data”

• Malware resident in SMRAM cannot be detected or removed by traditional
anti-virus software

40

Threats and Mitigation Guidelines

UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

Non-SMM Mode
• SMRAM address space is “invisible”

• “Read” attempts return all 0xff

• “Write” attempts fail

• Malware resident in SMM cannot be detected

41

Threats and Mitigation Guidelines

RAM

SMRAM

OS Kernel

Hypervisor

UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

42

Threats and Mitigation Guidelines

RAM

SMRAM

OS Kernel

Hypervisor

SMM Mode
• SMM code has full access to all system memory

and devices

• SMM code is not bound by OS Kernel or
Hypervisor protections

• SMM code can read all of memory, modify
memory contents, and even overwrite critical
system files and data on storage mediums

Hard drive

SMM Code

UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

43

Threats and Mitigation Guidelines

RAM

SMRAM

OS Kernel

Hypervisor

SMM Mode Exploits
• During an SMI, all code runs with SMM-level

privileges (Ring -2) regardless of where it resides

• Malware resident in SMRAM has full access to all
system memory and devices

• Legitimate code in unprotected memory can be
modified by Ring 0 malware

• Modified code called by an SMI handler runs with
SMM-level privileges (Ring -2) and gains full access to
the system

Hard drive

SMM Code

Non-SMM Code

UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

Threats and Mitigation Guidelines

44

• SMM code must never call code outside of
SMRAM because an attacker could have
maliciously modified that code

• SMM code must validate input parameters
from untrusted sources to prevent buffer
reads/writes that extend into SMRAM

• SMM code must copy input parameters and
validate and use the copy, to prevent time-
of-check-time-of-use (TOCTOU)
vulnerabilities

UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

Threats and Mitigation Guidelines

45

Enable Hardware Protections
• Lock SMRAM as early as possible
• Lock SMI control registers
• Enable hardware NX protections for

addresses outside of SMRAM (if supported)
• Enable paging NX protections for addresses

outside of SMRAM

UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

Threats and Mitigation Guidelines

Key areas for concern
• Firmware Flash Regions

• UEFI Variables in Flash

• Capsule Updates

• SMM

• Secure Boot

• Option ROMs

46 UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

UEFI Secure Boot
• Prevents running of unauthorized untrusted code: Option ROMs, UEFI

applications, and OS boot loaders

• Authorized code is validated by comparing the signature embedded in the
code with authorized signing certificates embedded in the UEFI platform
firmware

• If a matching/authorized signing certificate is not found, the code is not
run and an error message is typically displayed

• Prevents malicious Option ROMs and UEFI applications from compromising
a system

• Prevents booting a compromised OS to prevent ongoing malicious
activities (e.g., data leakage, infecting other systems, destructive behavior)

47

Threats and Mitigation Guidelines

UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

Threats and Mitigation Guidelines

48

• UEFI Variables that contain Secure Boot
settings must be locked and protected from
unauthorized modification

UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

Threats and Mitigation Guidelines

49

• SMM code must never call code outside of
SMRAM as this could allow bypass of
Secure Boot protections

UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

Threats and Mitigation Guidelines

50

• All flash Lock bits, SMM protections, and
Protected Range registers must be properly
set to prevent bypass of Secure Boot
protections

UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

Threats and Mitigation Guidelines

Secure Boot
• Disable CSM

• Set image verification defaults to secure values:
• DENY_EXECUTE_ON_SECURITY_VIOLATION

• QUERY_USER_ON_SECURITY_VIOLATION

• Disallow fallback to legacy boot

• Store all Secure Boot management variables as Authenticated Variables in
protected flash

• Require User-Presence to disable Secure Boot

• Protect variables containing user-settings for CSM and Secure Boot Enable
from unauthorized writes

51 UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

Threats and Mitigation Guidelines

Key areas for concern
• Firmware Flash Regions

• UEFI Variables in Flash

• Capsule Updates

• SMM

• Secure Boot

• Option ROMs

52 UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

Option ROM Exploit
• Install malware into the OS startup sequence

• Hook OS services to capture and leak sensitive data

• Hook OS services to hide from OS-level antivirus scans and other detection measures

• With legacy boot, could pollute the MBR. With UEFI boot, could replace the OS loader
(Bootx64.efi, BootIA32.efi)

• Perform persistent destructive behavior

• Install malware into hardware devices: hard drives, USB, Thunderbolt, etc.

• Reinstall OS-level malware on reset if it was detected and removed

• Survives OS reinstall and hard drive reformat if installed in a physical OpROM (e.g.,
addin card)

53

Threats and Mitigation Guidelines

UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

Option ROM Exploit Limitations
• Maliciously modified ROMs should not be dispatched if Secure Boot is properly enabled

• Cannot directly infect SMM if SMRAM is already locked

• Cannot write to SPI flash if flash write protections are already enabled

• THEREFORE, should be limited to Ring 0 privileges

54

Threats and Mitigation Guidelines

UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

Additional Concerns

55 UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

In addition to standard software security threats, UEFI
Platform Firmware is also susceptible to additional
threats, such as:

• Remote management control interfaces

• Debug hardware interfaces

• Custom security-related code implementations

• Development-oriented debugging code paths

• ASSERTs

• Password Handling

• Source code overrides

56

Additional Concerns

UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

Remote Management Control

57

• Ensure that the most recent version of
Management Engine (ME) or similar
firmware is used

• Provide an easy method for end-users to
update product firmware

UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

Debug Hardware Interfaces

https://lab.dsst.io/slides/33c3/8069.html

• Ensure that all hardware debug interfaces
are disabled and locked for shipping
products

• Ensure that all debug code that reports
incoming/outgoing data for development is
removed from shipping products

• Ensure that End of Manufacturing write-
once registers and fuses are properly
set/blown

UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

VOID Sha256Hash (
 IN VOID *Password,
 IN UINTN Length,
 OUT UINT8 *Hash
)
{
 UINTN i;
 ZeroMem (Hash, 32);

 // Just do a simple transformation for now.
 // Replace with real code later.
 for (i=0; i<Length; i++) {
 Hash[i%32] = ((UINT8*)Password)[i] + 'W';
 }
}

Custom Security-Related Code

59

• Always only use approved security-related
algorithms and industry vetted library
functions

• Never write custom security-related code,
even as a temporary solution because it
could end up in shipping products

int ValidatePassword (
 IN CHAR16 *Password,
 IN UINTN Length,
 IN UINT8 *Hash
)
{
 UINT8 PassHash [32];

 // Call a secure hashing function.
 Sha256Hash ((VOID*)Password, Length*sizeOf(CHAR16), PassHash);

 return MemCompare (Hash, PassHash, sizeof (PassHash));
}

UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

Development Debugging Code

60

• If you’re adding debugging code that would
create a vulnerability if shipped – stop and
rethink! There’s most likely a better way.

• If you absolutely must add insecure code
for debugging
• Make definition of a runtime symbol build-

dependent on the Debug-build symbol so
Release builds will break

• Make it runtime dependent on a behavior-
specific symbol so it is focused and easy to
remove

• Clearly comment it with a specific tag and
remove it as soon as possible

// BUGBUG_SECURITY: define symbols to include insecure code
// for debugging purposes. Remove prior to release!
#if !defined(MDEPKG_NDEBUG)
BOOLEAN mBypassVerification = TRUE;
BOOLEAN mLogPassword = TRUE;
#endif

int ValidatePassword (
 IN CHAR16 *Password,
 IN UINTN Length,
 IN UINT8 *Hash
)
{
 UINT8 PassHash [32];

 // BUGBUG_SECURITY: insecure code.
 if (mLogPassword) WritePasswordToLog (Password, Length);

 // Call a secure hashing function.
 Sha256Hash ((VOID*)Password, Length*sizeOf(CHAR16), PassHash);

 // BUGBUG_SECURITY: insecure code.
 if (mBypassVerification) return 0;

 return MemCompare (Hash, PassHash, sizeof (PassHash));
}

UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

ASSERTs

61

• ASSERTs are DANGEROUS, and should be
avoided

• ASSERTs are compiled out of Release builds

• ASSERTs are for catching bugs that should
never happen

• ASSERTs are not for catching possible errors or
validating inputs

• ASSERTs used for input validation can allow for
buffer overruns and other exploitable
vulnerabilities

EFI_STATUS TransferData (
 IN CHAR8 *InBuffer,
 IN UINT32 Length,
 IN UINT8 Id
)
{
 EFI_STATUS Status;
 UINT8 *StageBuffer;

 // Validate input parameters.
 if (InBuffer == NULL) return EFI_INVALID_PARAMETER;
 if (Length == 0) return EFI_INVALID_PARAMETER;
 if (Length > CONFIG_MAX_DATA_SIZE) return EFI_BAD_BUFFER_SIZE;

 // Create local staging buffer.
 Status = gBS->AllocatePool (
 EfiRuntimeServicesData, Length, &StageBuffer);
 if (EFI_ERROR (Status)) return Status;
 ASSERT (StageBuffer != NULL); // ptr should never be null if
 // AllocatePool returns success.

 CopyMem (StageBuffer, InBuffer, Length);
 Status = TransferDataToDevice (StageBuffer, Length, Id);

 return Status;
}

UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

Password Handling

62

• Never store passwords as raw text

• Always use an approved hashing algorithm
and only store representations of
passwords when needed

• Always explicitly clear buffers used to
operate on passwords as soon as possible
and before deallocation

EFI_STATUS AuthorizeUser (VOID)
{
 EFI_STATUS Status;
 SHA256_HASH PassHash, StoredHash;
 UINT16 *Password;
 int CmpValue;

 // Get the stored representation of the password if set.
 Status = GetPassHashFromStorage (&StoredHash);
 if (EFI_ERROR (Status)) return Status; // no password set.

 Status = gBS->AllocatePool (
 EfiBootServicesData, MAX_PASS_SIZE, &Password);
 if (EFI_ERROR (Status)) return Status;

 // Get raw password text from user.
 Status = GetPasswordFromUser (Password, MAX_PASS_SIZE);
 if (EFI_ERROR (Status)) return Status;

 Sha256Hash ((VOID*)Password, Length*sizeOf(CHAR16), &PassHash);
 ZeroMem (Password, MAX_PASS_SIZE); // explicitly clear password
 // before deallocating buffer.
 gBS->FreePool (Password);

 CmpValue = MemCompare (&StoredHash, &PassHash, sizeof (PassHash));
 if (CmpValue != 0) return EFI_ACCESS_DENIED;

 return EFI_SUCCESS;
}

UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

Overrides

Platform code often overrides portions of the core in an
Override folder
• Never assume that override code contains all current security fixes to the core versions

• Always compare the override versions with the latest core versions to ensure that all
security fixes are applied

• When adding custom code that could potentially add a vulnerability, always have the
code security-reviewed

63 UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

Validation Guidelines

64 UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

Validation Guidelines

For complex systems,

“Bug-Free” does not exist!

 Bugs provide a means to compromise a system!

65 UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

Validation Guidelines

Challenges of developing “Bug-Free” Firmware

• There are thousands and thousands of lines of code
 Manual review of all code and code paths is impractical

• There are multiple settings that must all be configured properly
 Test case matrixes for all use-cases can be overwhelming

• Even widely-accepted “safe” code can be found vulnerable
 OpenSSL 1.0.1 through 1.0.1f (Heartbleed)

• Systems rarely use the most current and secure code base
 Last minute code changes to products nearing release are risky

66 UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

Validation Guidelines

Many organizations have provided disclosures of known
issues and guidelines for validating firmware security

Examples come from Intel, Microsoft, Mitre, NIST, Linux
distros and others. Some are public and some are available

only under NDA via direct communications with the
involved companies

67 UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

Validation Guidelines

Targeted Source Code Reviews

• Variable Usage and Organization
• What would happen if a variable were deleted?

• What benefit an attacker could gain by modifying a variable?

• Does a variable need to be accessible at Runtime? Does it need to be
modified at Runtime?

68 UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

Validation Guidelines

Targeted Source Code Reviews

• External Facing Code and SMI Handlers
• Does the code properly validate externally provided input parameters? Does it use

copies to prevent TOCTOU vulnerabilities?

• Can an untrusted source provide input parameters that would cause unexpected
behavior?

• Can the code be tricked into copying data into or out of unintended address space
such as SMRAM?

69 UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

Validation Guidelines

Targeted Source Code Reviews

• Security Related Code
• Are industry vetted security algorithms being used, (no custom or ad hoc

implementations)?

• Are security algorithms being used correctly?

• Are the most recent versions of security libraries being used?

• Are the standard core implementations being used, (no older or custom versions
in an Override folder)?

• Are there any bugs or code paths that could allow bypass of a security check?

70 UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

Validation Guidelines

Validation Tools

• When a new vulnerability is discovered, always create a test for it (if possible)

• When there are any changes to code related to a security vulnerability, always re-test
for the vulnerability (if possible)

• Perform fuzz and boundary testing

• Incorporate industry standard testing tools, such as CHIPSEC and automated code
analysis

71 UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

Next Steps

72 UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

Next Steps

What Phoenix is Doing
• Performing targeted code reviews

• Developing security test tools and integrating into our QA process

• Reviewing disclosures and guidelines, and verifying our implementations

• Back porting security fixes to previous codebases

• Working with customers to educate them on important security fixes

• Monitoring the EDK2 codebase for important security fixes

• Monitoring social media for publicly disclosed findings

• Investigating emerging specifications, such as NIST SP 800-193

73 UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

Next Steps
• Everyone that provides pre-OS code, and that includes firmware Option

ROM code and EFI applications, needs to follow similar steps to validate
their implementations

• Become a Contributor member for access to UEFI work in progress

• Select a corporate technical security representative and have them
participate with the UEFI Spec Security Sub-team

• Consider participation in the Tianocore open-source development project
and its security team

• Sign up to the usrt-notify email alias via admin@uefi.org to receive urgent
security notifications

• Make sure you have NDAs and arrangements to receive security
notifications from silicon providers, OSVs, etc.

74 UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

mailto:admin@uefi.org

For more information on the Unified
EFI Forum and UEFI Specifications,
visit http://www.uefi.org

presented by

75 UEFI Security Resources – July 2018 Copyright © 2017-2018 Phoenix Technologies Ltd.

http://www.uefi.org/

