
The Role of Redfish in UEFI Forum
Firmware Specifications

Presented by UEFI Forum

July 17, 2019

www.uefi.org 1

Welcome & Introductions

www.uefi.org 2

Moderator: Brian Richardson
Firmware Ecosystem Development
Member Company: Intel Corporation
@intel_brian

Panelist: Samer El Haj Mahmoud
DMTF Representative
@samerhaj

Panelist: Zach Bobroff
Member Company: American
Megatrends

Panelist: Jason Spottswood
Member Company: Hewlett Packard
Enterprise

Samer El Haj Mahmoud
Lenovo, DMTF

Principal Engineer at Lenovo Data Center Group. Author and contributor of the
DMTF Redfish specifications

• Lead architect for Operating Systems and Solutions technology enablement
at Lenovo DCG

• Representing DMTF Redfish Forum

• Active participant and contributor to industry standards bodies, including the
DMTF Redfish Forum, and the UEFI Forum

• Leading Lenovo's DMTF Redfish industry standard participation, architecture,
and Redfish firmware implementation

• 20 years of experience in server development, in the areas of firmware,
operating systems, system software, hardware management, and industry
standards

Jason Spottswood

Hewlett Packard Enterprise

• Senior Manager of UEFI core development for HPE servers,
and direct development team responsible of UEFI/Redfish
support.

• Member of DTMF Redfish and UEFI Forum

• 18 year career in BIOS development

• Chairman of the NVDIMM sub-team (NVST)

Zach Bobroff

American Megatrends

• Technical marketing manager of UEFI and remote
management products

• Member of DMTF Redfish and UEFI Forum

• 11 years of BIOS development at AMI

www.uefi.org 5

Samer El Haj Mahmoud
DMTF

What is Redfish? How can I use it to
help manage my servers?

What is Redfish™ ?
• A DMTF industry standard (http://redfish.dmtf.org)

– DMTF developing manageability standards for 27 years

– Allied with 21 standards and 80+ research organizations

• Redfish: RESTful interface for managing IT
Infrastructure

– Built on modern tool-chain (HTTP(s)/TLS/JSON)

– Content is human-readable JSON, backed by schema
(CSDL, json-schema, OpenAPI)

• Redfish Models

– Covering Compute, storage, networking, and power/cooling
equipment, platforms, and services

HTTP/S

Redfish Service

Client

JSON

http://redfish.dmtf.org/

American Megatrends (AMI), ARM, Artesyn Embedded Technologies, Cray, Eaton, Fujitsu, Huawei, IBM,
Insyde, Mellanox, Microchip, NetApp, Newisys, OSIsoft, Quanta, Solarflare, Toshiba, Western Digital

Redfish Forum Supporting Companies

Redfish Forum Leadership Companies

Redfish Industry Alliance Partners & efforts

DMTF Redfish Forum

Redfish Approach to HW Management

• Leverage common Internet / Web Services, and other standards

• Represent modern HW designs (standalone to scale-out, OCP)

• Separation of protocol and data model: can be revised independently

Design
Tenets

• HTTPS / SSL: Primary data transport

• SSDP from uPnP: Service Discovery

• HTTP-based alert subscription (HTTP callbacks, SSE streaming)

Protocol
Suite

• Modern, standards-based

• Widely used for web services, software defined and public APIs

• Easy for IT professionals and amateurs to utilize

REST &
JSON

• Schema-based, starting with CSDL, JSON, OpenAPI Schema

• Data model easy for humans to read/edit, and easy for code to parse

• New data modeling tenants to facilitate ease of design

Data
Model

Why HTTP, REST, and JSON?
• HTTP(S): The Web protocol

• Well-understood by admins

• Known security model

• Known network configuration

• REST - REpresentational State Transfer

• Preferred Software Architectural “style” for web development

• Standard verbs (HTTP GET / PUT / PATCH / POST /

DELETE / HEAD) and nouns (resources, identified by URIs)

• JSON – http://www.json.org

• Modern data format. Simpler than XML

• Easy for humans to read and write

• Easy for machines to parse and generate

{

"BootMode": "Uefi",

"EmbeddedSata": "Raid",

"Nic1Enable": true,

"ProcCoreCount": 8
}

Client

HTTP POST

Server

/service/weather
(REST Interface)

{“low” : 73, “high” : 83 }

Response

Request

{“city” : “NYC”, “units” : “F” }

http://www.json.org/

Redfish API usage example

rawData = urllib.urlopen(‘https://10.243.1.18/redfish/v1/Systems/1’)

jsonData = json.loads(rawData)

print(jsonData[‘SerialNumber’])

KVX0151

Output

Client Python code

Three lines of code:
• Point to the resource
• Get the data
• Print the serial number.

Sample Redfish Data Model

Root

Links to all content

/redfish/v1

Collection of Chassis

"Physical view"

/redfish/v1/Chassis

Processors

Storage

NICs

Collection of Systems

"Logical view"

/redfish/v1/Systems

Collection of Managers

"OOB manageability"

/redfish/v1/Managers

Power

Thermal

Virtual Media

Net protocol
Baseboard Mgmt Ctlr
(BMC)

/redfish/v1/Managers/<id>

Server System

"Logical computer system"

/redfish/v1/Systems/<id>

Chassis

"Physical asset info"

/redfish/v1/Chassis/<id>

ManagedBy

Accounts

Events

Tasks

Updates

Collection SingletonService Root

Registries

Sessions
ComputerSystems

LogService

BIOS

Memory

Jobs

PCIeDevices

Collection of Fabric Inter-
connect

/redfish/v1/Fabrics

PCIe Fabric

/redfish/v1/Fabrics/PCIe

Endpoints

Switches

Zones

Schemas

PCIe Slots

Serial Interface

Sample Redfish Output - Service Root
{

"@odata.id": "/redfish/v1/",

"@odata.type": "#ServiceRoot.1.0.0.ServiceRoot",

"@odata.context": "/redfish/v1/$metadata#ServiceRoot",

"RedfishVersion": "1.0.0",

"UUID": "00000000-0000-0000-0005-000000000001",

"Chassis": {

"@odata.id": "/redfish/v1/Chassis/",

},

"Managers": {

"@odata.id": "/redfish/v1/Managers/",

},

"Systems": {

"@odata.id": "/redfish/v1/Systems/"

},

"SessionService": {

"@odata.id": "/redfish/v1/SessionService/",

},

"Registries": {

"@odata.id": "/redfish/v1/Registries/"

},

"JsonSchemas": {

"@odata.id": "/redfish/v1/JsonSchemas/"

}

}

HTTP GET @ https://<ip>/redfish/v1/

Starting point
• Links to all resources
• Systems, Chassis,

Managers, Fabric
Collections

Services
• Events
• Accounts
• Tasks
• Jobs
• Sessions
• FW Updates

Metadata
• Links to Schema

(JSON, CSDL XML)
• Links to Registries

(BIOS Attributes,
Messages)

Sample Redfish output - Computer System
{

"@odata.id": "/redfish/v1/Systems/1",

"@odata.type": "#ComputerSystem.1.5.0.ComputerSystem",

"Manufacturer": "Contoso",

"Model": "3500",

"SerialNumber": "437XR1138R2",

"UUID": "38947555-7742-3448-3784-823347823834",

"ProcessorSummary": {

"Count": 2,

"Model": "Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz"

},

"Actions": {

"#ComputerSystem.Reset": {

"target": "/redfish/v1/Systems/1/Actions/ComputerSystem.Reset"

}

},

"Bios": {

"@odata.id": "/redfish/v1/Systems/437XR1138R2/BIOS"

},

"Processors": {

"@odata.id": "/redfish/v1/Systems/1/Processors"

} ,

"Memory": {

"@odata.id": "/redfish/v1/Systems/437XR1138R2/Memory"

}

}

HTTP GET @ https://<ip>/redfish/v1/Systems/1
Boot flow
• Power Control
• Boot Order and

override

System Info
• BIOS Version
• UUID
• Serial Number
• Asset Tag
• Manufacturer
• Model
• SKU

Links to components
• Memory
• CPU
• Storage
• Networking
• TPM
• BIOS
• SecureBoot

Redfish Host Interface

• DMTF Host Interface Specification - DSP0270

– “In-band” access to the Redfish service from
UEFI/Host OS

– Replacement for IPMI-over-KCS

• TCP/IP Based
– Redfish HTTPs requests & responses over a TCP/IP

network connection between Host/client and
Manager/service.

– Over any physical or logical interconnect that can
route TCP/IP

• OS Discovery
– SMBIOS Type 42 to identify the network interface

15

https://www.dmtf.org/sites/default/files/DSP0270_1.0.1.pdf

DMTF Redfish Resources
• Redfish User Forum

– User forum for questions, suggestions and discussion

– http://www.redfishforum.com

• Redfish Developer Portal
– Redfish Interactive Resource Explorer

– Educational material, Hosted Schema files, documentation

– http://redfish.dmtf.org

• Redfish Standards page
– Schemas, Specs, Mockups, White Papers, Educational Material

– http://dmtf.org/redfish

• DMTF Redfish Forum
– Companies involved, Schedules & Future work, Charter

– Join the DMTF to get involved in future work

– http://www.dmtf.org/standards/spmf

http://redfish.dmtf.org/
http://dmtf.org/redfish
http://www.dmtf.org/standards/spmf

Jason Spottswood
HPE

As a user or administrator, I am familiar
with configuring a system from the UEFI pre-
boot system utility. Does Redfish provide
resources for platform configuration, and
how are the resources modeled?

BIOS Configuration Resources

Computer
System

Secure
Boot

Boot
Options

Memory
Domains

BIOS

Boot
Order

0004

0003

0002

0001

Attributes

KeyMgmt

Redfish
Service

Root

Mode

Status

Memory
Chunks

2

1

Boot Order Override

• Boot section taken from ComputerSystem resource

• Allows a single target override to UEFI boot order

• Can specify an alias or specific UEFI target

• UEFI target uses UEFI device path

UEFI Boot Order

• On UEFI systems, these properties affect the UEFI
variables for boot: Boot####, BootOrder, BootNext

• URI link to the collection of boot options

Boot Options

• BootOptionReference: The UEFI Boot Option variable
name

• UefiDevicePath: The UEFI device path used to access
the UEFI Boot Option

• Alias: class of the boot device

Secure Boot

• Resetting and deleting Secure boot keys

• SecureBootCurrentBoot: UEFI Secure Boot state

• SecureBootMode: UEFI Secure Boot mode

Memory Configuration

BIOS Settings & Attribute Registry

Attributes:

• Can be mapped to HII UEFI terms

• Can be used to configure UEFI functionality

• Some OEMs may map these to keywords in the
UEFI configuration Namespace Registry

Configuration Namespace Registry:

• “This is an industry registry of vendor-specific
namespace names for purposes of platform
configuration”

• https://uefi.org/confignamespace

Zach Bobroff
AMI

As a firmware developer of UEFI and
Redfish, what has your company
learned?

Redfish: Modern System Management

Redfish is an excellent framework for modern platform
management

IPMI has been a very specific implementation that requires
OEM specific tools

Redfish is defined in an abstract manner that allows end users
to manage non-homogenous HW in a standardized way

Gives the end user the freedom to manage systems the way
they want!

Redfish Hardware

• The Redfish specification does not define the hardware
configuration of the system

• System can have a BMC, share one BMC for multiple systems or,
even not have a BMC!

• The only defined interface is the Redfish Host Interface, which is
a network connection

• Common hardware design is to have a BMC on the platform and
connect it to the host system via a USB connection that will
emulates a LAN device

• Commonly called LAN over USB

Redfish Implementation

• This is very similar to the way UEFI defines interfaces

Redfish provides the API’s, the implementation is up to the developer

• Requires tight integration of information exchange between the UEFI FW and the Redfish
FW

• While the host interface is defined by the specification, much of the underlying data
transfer between UEFI FW and Redfish FW is proprietary and is important to optimize

Many of the Redfish interfaces must provide information that cannot
normally be gathered by a BMC on its own

System Configuration: BIOS Setup

System Configuration Data

• The UEFI specification has a very clearly defined method for UEFI
Configuration data explained in the HII Chapter

• Redfish has its own method for storing the data called the system
attribute registry

• The UEFI and Redfish specifications have differences regarding system
configuration that can cause problems

• Complicated layouts where a single question exists multiple times with
suppressions makes it difficult to determine the true instance

• UEFI has the luxury that the HII browser can determine everything at UEFI
boot-time, Redfish must be available at all times!

Not as easy as just exporting the HII DB!

System Inventory
• System inventory information is the detailed list of devices in the

system
• Should go to details of connection point and serial number of

devices

• A BMC can detect some information, but UEFI generally has all
the information due to how it did the base initialization

• What BMC can detect is very dependent on HW design

• UEFI provides simple abstract interfaces that can be used to easily
gather system inventory information

PciIo, SimpleNetwork, SimpleFilesystem, Smbios and other UEFI
protocols can be used to determine the system inventory

information that Redfish needs

Data Exchange

As UEFI collects system configuration and inventory information, it needs
to transfer it to the Redfish Host

This is done over LAN and uses the UEFI REST Protocol

Using the REST Protocol, the UEFI FW is able to easily update
information in Redfish registries

The amount of data being exchanged is megabytes of information and can
slow down system boot time dramatically

Data Exchange Timing

• Maybe only exchange it when the data changes? Maybe use a checksum or hash?

• What about after a Redfish Host or UEFI FW update?

Should this be exchanged on every boot?

• Does the system boot without exchanging the data or wait until Redfish Host Interface is
up?

• Legacy interfaces like KCS can be used, but what if the Redfish Host Interface never
comes up? Should there be a timeout?

• System downtime is at a premium in the datacenter so a missed update will cause stale
information to persist in the Redfish registry!

What if the BMC and BIOS boot in parallel? How do you know when
the BMC is ready?

UEFI Redfish Authentication

• To transfer the information UEFI needs similar inventory or
configuration, it will need to authenticate with the Redfish Host

• Should UEFI use a defined user/password? Would it be machine
specific or model specific?

• Think how easily both can be compromised!

• What about the OS, what credentials does it use to authenticate?

Redfish specification defines an auto authentication
setup for FW/OS which is generated on every boot!

Auto Authentication

• Legacy interfaces like KCS can be used again, but this requires the HW to support it

How does UEFI retrieve the login credentials every boot?

• Is NVRAM secure enough?

• Remember that Redfish Host Interface is network, so OS must be sure to secure the network
interface connected to the Redfish Host from other applications

How does UEFI FW provide the OS their own login credentials in a secure
manner?

UEFI and Redfish: Working Together

• UEFI and Redfish are complementary specifications
• Each specification does not normally define HW requirements –

much of the final implementation is up to the firmware provider
• Lots of data is transferred between UEFI and Redfish – be

careful how and when data is transferred
• Poorly designed implementations can effect product adoption

• The UEFI and Redfish specifications have many common
members – expect many issues to be worked out in coming
versions

Questions?

