
presented by

UEFI Goes to Washington

UEFI Fall 2023 Developers Conference & Plugfest
October 9-12, 2023

Presented by Tim Lewis, CTO of Insyde Software

www.uefi.org 1

Agenda

• Why Does The U.S.
Government Care About UEFI?

• U.S. Government Initiatives
That Affect UEFI Firmware
– SBOMs

• Call to Action
www.uefi.org 2

Why Does The U.S. Government Care?
“Firmware presents a large and ever-expanding attack
surface…Securing the firmware layer is often
overlooked, but it is a single point of failure in devices
and is one of the stealthiest methods in which an
attacker can compromise devices at scale. Over the past
few years, hackers have increasingly targeted firmware
to launch devastating attacks.”

www.uefi.org 3

Assessment of the Critical Supply Chains Supporting the U.S. Information and Communications Technology Infrastructure, U.S. Departments of Commerce and U.S. Department of
Homeland Security, February 23, 2022, page 41, https://www.dhs.gov/sites/default/files/2022-02/ICT%20Supply%20Chain%20Report_0.pdf

https://www.dhs.gov/sites/default/files/2022-02/ICT%20Supply%20Chain%20Report_0.pdf

UEFI Firmware Security Incidents
Insyde tracked 544 total security incident reports (SIRs) for
UEFI firmware over 2+ year period (20.44/mo).

– Twice-annual peaks are primarily due to silicon vendor security
bulletins.

4

Incident Reports

14 28 32
15 21

3 14 21
2 15

57

18

52

21
14

4 3 7
32 31 32 36

19
6 10 21 24

INSYDEH2O SECURITY INCIDENTS
JUN'21 - AUG'23

Security Trends – March to August 2023
• Silicon vendor firmware security bugs continue to dominate

the day-to-day security issues.

• Bad: Security researchers have found the EDK2 networking
stack, and it looks like there will be more.

• Good: 1 out of 13 Insyde issues due to ODM/OEM Feature
code, which means Insyde’s core fixes have broader reach.

– UEFI variable issues more likely in chipset and OEM code.
– Therefore, less attractive to malware authors and security

researchers because # of units affected per issue is lower

• Good: Trend toward UEFI variable issues, not SMM issues.

5

3rd Party
Researchers

10% (10)

Insyde
Discovered

3% (3)

Open
Source

19% (19)

Silicon
Vendors
68% (69)

InsydeH2O Security Incident
Report Source (Mar-Aug'23)

Time To Fix

www.uefi.org 6

• Security researcher initial reports typically want disclosure
(A+B+C+Y+Z) at 90 days. We can only measure (A+B+C) currently.

• Insyde leaves 30 days for C.
• Insyde is encouraging OEM/ODM to shorten A as much as possible.
• Insyde A+B+C rate is 6.25% at 90 days and 50% at 120 days.

Security
Researcher
Investigates

(X Days)

OEM/ODM or
Silicon Vendor

Triages
 (A Days)

IBV Triages
(B Days)

OEM/ODM
Integrates and

Tests Fix
 (C Days)

OEM/ODM
Deploys Update

(Y Days)

End-User
Reflashes the

UEFI Firmware
(Z Days)

Time to Fix

www.uefi.org 7

U.S. Government Interest In Securing UEFI

U.S. Government Steps Toward Securing
UEFI Deployments

• CISA “A Call to Action: Bolster
UEFI Cybersecurity Now”

• NIST SP 800-218 Attestations

www.uefi.org 8

CISA’s “Bolster UEFI Security Now” Blog
• “Attackers have a clear value proposition for targeting

UEFI software” because UEFI subversion can provide
malicious software the ability to persist through:
– System reboot – the malware survives basic defensive

actions such as turning the device off and on again.
– Operating system reinstallation—Malware that persists

through reinstallation can evade this standard incident
response practice.

– Partial physical part replacement—A device infected with this
level of persistent malware basically needs to be thrown
away rather than repaired.

www.uefi.org 9
Adapted from https://www.cisa.gov/news-events/news/call-action-bolster-uefi-cybersecurity-now

https://www.cisa.gov/news-events/news/call-action-bolster-uefi-cybersecurity-now

CISA’s “Bolster UEFI Security Now” Blog
• Cybersecurity & Infrastructure Security Agency (CISA)

charts path to improved UEFI firmware security:
– Enable system owners to able to audit, manage, and update

UEFI components.
– Enable collecting, analyzing, and responding to event logs

that identify UEFI-related activities (e.g., changes, updates,
add/remove components).

– Use secure development environments and adopt software
development best practices

– Adopt uninterrupted and reliable update capabilities
– Expand adoption of best practices for PSIRT operations.

www.uefi.org 10
Adapted from https://www.cisa.gov/news-events/news/call-action-bolster-uefi-cybersecurity-now

https://www.cisa.gov/news-events/news/call-action-bolster-uefi-cybersecurity-now

www.uefi.org 11

End-User & Security Response

End-User & Security Response
• Ultimately, platform security depends on the

end user or IT administrator, who is least
knowledgeable about firmware security or how
to fix it.

• Except in the limited case of flash tampering,
most security technologies in UEFI firmware are
content with stopping attacks from stealing
secrets or compromising integrity not
responding and repairing.

www.uefi.org 12

End-User & Security Response
• What should UEFI firmware do when it

detects an active security threat?
• UEFI firmware’s answer in most cases:

hang the system.
• But end users don’t react to “hang”

with productive responses – reset, turn
off, etc.

• If there is an active security threat,
how should UEFI firmware react, report
and respond?
– Insyde’s FACT and HP’s SureStart and

some non-BIOS solutions try to give
options: reflash, restart, report to admin,
crash dump, etc.

www.uefi.org 13

Events Default EDK2, CPU or
Chipset Behavior

BIOS flash modification Force flash update or
hang

Illegal SMM CPU save state access Hang

SMM call-out Hang

SMM non-SMRAM modification Hang

Heap overflow/underflow Hang

Stack overflow/underflow Hang

Null-pointer Undefined or hang

SMRAM modification Hang

Driver corrupts stack Undefined

Driver integer overflow/underflow Undefined

Driver uses uninitialized data. Undefined

Driver private data structure corruption Undefined

Driver TPL inversion Undefined

PCIe Reported Security Events Ignored

www.uefi.org 14

NIST SP 800-218 Attestation

NIST SP 800-218
• Executive Order (EO) 14028 – May 2021

– NIST SP 800-218 Secure Software Development Framework (SSDF) – Feb 2022
– OMB (M-22-28 & M-23-16) requires all federal agencies to comply with NIST guidance –

Sep 2022
• No later than September 13, 2023, for all software, “agencies shall collect attestation letters not

posted publicly by software providers for all software subject to the requirements of this
memorandum.”

• All Federal critical software must comply with NIST guidance – Jun 2023
• All Federal 3rd party software must comply with NIST guidance – Sep 2023

• Requirements:
– A self-attestation that the product was built in conformance with NIST’s SSDF.
– On request, a Software Bill of Materials (SBOM) for the product.
– On request, other artifacts substantiating SSDF conformance, e.g., output of vulnerability

scanners, software provenance metadata, etc.
– On request, evidence of participation in a Vulnerability Disclosure Program.

www.uefi.org 15

https://www.nist.gov/itl/executive-order-14028-improving-nations-cybersecurity
https://www.whitehouse.gov/wp-content/uploads/2022/09/M-22-18.pdf
https://www.whitehouse.gov/wp-content/uploads/2023/06/M-23-16-Update-to-M-22-18-Enhancing-Software-Security.pdf

https://www.nist.gov/itl/executive-order-14028-improving-nations-cybersecurity
https://www.whitehouse.gov/wp-content/uploads/2022/09/M-22-18.pdf
https://www.whitehouse.gov/wp-content/uploads/2023/06/M-23-16-Update-to-M-22-18-Enhancing-Software-Security.pdf

Key Points To NIST SP 800-218
• PS.3.2: Collect, safeguard, maintain, and share provenance data

for all components of each software release (e.g., in a software
bill of materials [SBOM]).

• PW.4.4: Verify that acquired commercial, open-source, and all
other third-party software components comply with the
requirements, as defined by the organization, throughout their
life cycles. [Supply Chain]

• RV.1.1: Gather information from software acquirers, users, and
public sources on potential vulnerabilities in the software and
third-party components that the software uses and investigate
all credible reports. [PSIRT]

www.uefi.org 16

NIST SP 800-218 Attestation Form
The software is developed and built in secure environments. Those environments are secured by
the following actions, at a minimum:

1. Separating and protecting each environment involved in developing and
building software;

Regularly logging, monitoring, and auditing trust relationships used for authorization and access: (i) to any
software development and build environments; and (ii) among components within each environment;

Enforcing multi-factor authentication and conditional access across the environments relevant to developing and
building software in a manner that minimized security risk;

Taking consistent and reasonable steps to document as well as minimize use or inclusion of software products that
create undue risk within the environments used to develop and build software;

Encrypting sensitive data, such as credentials, to the extent practicable and based on risk;

Implementing defensive cyber security practices, including continuous monitoring of operations and alerts and, as
necessary, responding to suspected and confirmed cyber incidents;

www.uefi.org 17

NIST SP 800-218 Attestation Form
2. The software producer has made a good-faith effort to maintain trusted source

code supply chains by: (a) Employing automated tools or comparable processes;
and (b) Establishing a process that includes reasonable steps to address the
security of third-party components and manage related vulnerabilities;

3. The software producer employs automated tools or comparable processes in a
good-faith effort to maintain trusted source code supply chains;

4. The software producer maintains provenance data for internal and third-party
code incorporated into the software;

5. The software producer employs automated tools or comparable processes that
check for security vulnerabilities. In addition: (a) The software producer ensures
these processes operate on an ongoing basis and, at a minimum, prior to product,
version, or update releases; and (b) The software producer has a policy or process
to address discovered security vulnerabilities prior to product release; and (c) The
software producer operates a vulnerability disclosure program and accepts,
reviews, and addresses disclosed software vulnerabilities in a timely fashion.

www.uefi.org 18

www.uefi.org 19

Software Bill of Materials (SBOM)

Implementation Details
• During build, SPDX files for each package and source file

are created from source files, augmented with license
data from license files (if present), dependencies from
external libraries and the hash of the source file and
placed in the project build directory.

• Concatenated together into the project directory.

• Tools can verify that the contents of the SPDX files match
the source files.

www.uefi.org 20

Sample SPDX
SPDXVersion: SPDX-1.2
DataLicense: CC0-1.0
DocumentNamespace: https://www.insyde.com/spdxdocs/FatPkg-SPDX-1.2-00e96079-9043-522d-bc22-bbccf48d6de3Document
Name: FatPkg
SPDXSPDXID: SPDXRef-DOCUMENT
DocumentComment: <text>FatPkg Document</text>

Creator: Organization: Insyde Software Corp. (https://www.insyde.com/)
Created: 2022-04-21T03:19:03Z

Relationship: SPDXRef-DOCUMENT CONTAINS SPDXRef-Package-FatPkg
RelationshipComment: <text>Document contains package FatPkg</text>

PackageName: FatPkg
SPDXID: SPDXRef-Package-FatPkg
PackageVersion: 1.0
PackageDownloadLocation: http://svn.insyde.com/
PackageSupplier: Organization: Insyde Software Corp. (https://www.insyde.com/)
PackageVerificationCode: df94ca698b3e3ffa862b3cd5ac3d9568dfda10cd
PackageLicenseDeclared: BSD-2-Clause
PackageLicenseConcluded: BSD-2-Clause
PackageLicenseInfoFromFiles: BSD-2-Clause
PackageCopyrightText: <text>Copyright (c) 2012 - 2022, Insyde Software Corp. All Rights Reserved.</text>

FileName: \EDK2\FatPkg\EnhancedFatDxe\Data.c
SPDXID: SPDXRef-Data-srcFileType: SOURCE
FileChecksum: SHA1: d0cc1c226b572507bb3aafb5b4ef363fa0579404
LicenseConcluded: BSD-2-Clause
LicenseInfoInFile: BSD-2-Clause
FileCopyrightText: <text>Copyright (c) 2005 - 2013, Intel Corporation. All rights reserved.</text>

www.uefi.org 21

https://www.insyde.com/spdxdocs/FatPkg-SPDX-1.2-00e96079-9043-522d-bc22-bbccf48d6de3Document
https://www.insyde.com/
http://svn.insyde.com/
https://www.insyde.com/

Implementation Details
• If SWID XML files are present, they are updated by the build tools with the

hash of the module.

• If SWID XML files are not present, they are generated from for each
package by build tools, augmented with data from SPDX files (if present)
and the hash of the module.

• Converted to coSWID, header added and copied to output directory and,
optionally, inserted into special SBOM region in the final firmware image.

• Usable by BMC
– Validate image or image vs. coSWID SBOM file and monitor

www.uefi.org 22

Sample Module SWID XML SBOM
<?xml version="1.0" ?><SoftwareIdentity lang="En" name="VariableRuntimeDxe"
 tagId="CBD2E4D5-7068-4FF5-B462-9822B4AD8D60" version="1.0"
 xmlns="http://standards.iso.org/iso/19770/-2/2015/schema.xsd">
 <Entity name="Insyde Software Corp." regid="insyde.com"
 role="tagCreator softwareCreator"/>
 <Meta colloquialVersion="8BA32620EDAB7B861ACEE5861E494244E72D6683"/>
</SoftwareIdentity>

www.uefi.org 23

Possible Future SBOM Efforts
• Optimize for size: Use compression, don’t

include licensing information.

• Add library dependencies (for all libraries or
only external libraries) for SWID

• Create a validation tool to verify module
hash matches those in SBOM.

www.uefi.org 24

Call to Action
• Update your Secure Development Lifecycle (SDL) based on NIST

guidelines in order that you can provide attestation to your
customers.

• Prepare a strategy that gives end users and IT department more
information about the firmware contents and gives them ways
to respond to security incidents.

• Get your SBOMs ready for (at least) the entire BIOS and the end-
user tools. UEFI SBOM Team working on minimum standards.

www.uefi.org 25

Links
• https://www.nist.gov/system/files/documents/2022/02/04/software-

supply-chain-security-guidance-under-EO-14028-section-4e.pdf
• https://www.whitehouse.gov/wp-content/uploads/2022/09/M-22-18.pdf
• https://www.whitehouse.gov/wp-content/uploads/2023/06/M-23-16-

Update-to-M-22-18-Enhancing-Software-Security.pdf
• https://www.ntia.doc.gov/files/ntia/publications/sbom_minimum_eleme

nts_report.pdf
• https://www.nist.gov/itl/executive-order-improving-nations-

cybersecurity/critical-software-definition-explanatory
• https://www.cisa.gov/sites/default/files/2023-04/secure-software-self-

attestation_common-form_508.pdf

www.uefi.org 26

https://www.nist.gov/system/files/documents/2022/02/04/software-supply-chain-security-guidance-under-EO-14028-section-4e.pdf
https://www.nist.gov/system/files/documents/2022/02/04/software-supply-chain-security-guidance-under-EO-14028-section-4e.pdf
https://www.whitehouse.gov/wp-content/uploads/2023/06/M-23-16-Update-to-M-22-18-Enhancing-Software-Security.pdf
https://www.whitehouse.gov/wp-content/uploads/2023/06/M-23-16-Update-to-M-22-18-Enhancing-Software-Security.pdf
https://www.whitehouse.gov/wp-content/uploads/2023/06/M-23-16-Update-to-M-22-18-Enhancing-Software-Security.pdf
https://www.ntia.doc.gov/files/ntia/publications/sbom_minimum_elements_report.pdf
https://www.ntia.doc.gov/files/ntia/publications/sbom_minimum_elements_report.pdf
https://www.nist.gov/itl/executive-order-improving-nations-cybersecurity/critical-software-definition-explanatory
https://www.nist.gov/itl/executive-order-improving-nations-cybersecurity/critical-software-definition-explanatory
https://www.cisa.gov/sites/default/files/2023-04/secure-software-self-attestation_common-form_508.pdf
https://www.cisa.gov/sites/default/files/2023-04/secure-software-self-attestation_common-form_508.pdf

Thanks for attending the UEFI Fall 2023
Developers Conference & Plugfest

For more information on UEFI Forum and UEFI
Specifications, visit http://www.uefi.org

presented by

www.uefi.org 27

http://www.uefi.org/

www.uefi.org 28

Backup

NIST SP 800-218 Checklist (PO.1)
Define Security Requirements for Software Development

Ensure that security requirements for
software development are known at
all times so that they can be taken
into account throughout the SDLC and
duplication of effort can be minimized
because the requirements
information can be collected once
and shared.
This includes requirements from
internal sources (e.g., the
organization’s policies, business
objectives, and risk management
strategy) and external sources (e.g.,
applicable laws and regulations).

PO.1.1: Identify and document all
security requirements for the
organization’s software development
infrastructures and processes, and
maintain the requirements over time.
PO.1.2: Identify and document all
security requirements for
organization-developed software to
meet, and maintain the requirements
over time.
PO.1.3: Communicate requirements
to all third parties who will provide
commercial software components to
the organization for reuse by the
organization’s own software.

www.uefi.org 29

NIST SP 800-218 Checklist (PO.2)
Implement Roles and Responsibilities

Ensure that everyone inside and
outside of the organization involved
in the SDLC is prepared to perform
their SDLC-related roles and
responsibilities throughout the SDLC.

PO.2.1: Create new roles and alter
responsibilities for existing roles as
needed to encompass all parts of the
SDLC.
PO.2.2: Provide role-based training
for all personnel with responsibilities
that contribute to secure
development.
PO.2.3: Obtain upper management or
authorizing official commitment to
secure development, and convey that
commitment to all with development-
related roles and responsibilities.

www.uefi.org 30

NIST SP 800-218 Checklist (PO.3)
Implement Supporting Toolchains

Use automation to reduce human
effort and improve the accuracy,
reproducibility, usability, and
comprehensiveness of security
practices throughout the SDLC, as
well as provide a way to document
and demonstrate the use of these
practices.
Toolchains and tools may be used at
different levels of the organization,
such as organization-wide or project-
specific, and may address a particular
part of the SDLC, like a build pipeline.

PO.3.1: Specify which tools or tool
types must or should be included in
each toolchain to mitigate identified
risks, as well as how the toolchain
components are to be integrated with
each other.
PO.3.2: Follow recommended
security practices to deploy, operate,
and maintain tools and toolchains.
PO.3.3: Configure tools to generate
artifacts of their support of secure
software development practices as
defined by the organization.

www.uefi.org 31

NIST SP 800-218 Checklist (PO.4)
Define and Use Criteria for Software Security Checks

Help ensure that the
software resulting from
the SDLC meets the
organization’s
expectations by defining
and using criteria for
checking the software’s
security during
development.

PO.4.1: Define criteria for
software security checks
and track throughout the
SDLC.
PO.4.2: Implement
processes, mechanisms,
etc. to gather and
safeguard the necessary
information in support of
the criteria.

www.uefi.org 32

NIST SP 800-218 Checklist (PO.5)
Implement and Maintain Secure Environments for Software Development

Ensure that all components of
the environments for software
development are strongly
protected from internal and
external threats to prevent
compromises of the
environments or the software
being developed or
maintained within them.
Examples of environments for
software development include
development, build, test, and
distribution environments.

PO.5.1: Separate and protect
each environment involved in
software development.
PO.5.2: Secure and harden
development endpoints (i.e.,
endpoints for software
designers, developers, testers,
builders, etc.) to perform
development-related tasks
using a risk-based approach.

www.uefi.org 33

NIST SP 800-218 Checklist (PS.1)
Protect All Forms of Code from Unauthorized Access and Tampering

Help prevent unauthorized
changes to code, both inadvertent
and intentional, which could
circumvent or negate the intended
security characteristics of the
software.
For code that is not intended to be
publicly accessible, this helps
prevent theft of the software and
may make it more difficult or time-
consuming for attackers to find
vulnerabilities in the software.

PS.1.1: Store all forms of code –
including source code,
executable code, and
configuration-as-code – based
on the principle of least
privilege so that only authorized
personnel, tools, services, etc.
have access.

www.uefi.org 34

NIST SP 800-218 Checklist (PS.2)
Provide a Mechanism for Verifying Software Release Integrity

Help software acquirers
ensure that the software they
acquire is legitimate and has
not been tampered with.

PS.2.1: Make software
integrity verification
information available to
software acquirers.

www.uefi.org 35

NIST SP 800-218 Checklist (PS.3)
Archive and Protect Each Software Release

Preserve software releases in order
to help identify, analyze, and
eliminate vulnerabilities discovered
in the software after release.

PS.3.1: Securely archive the
necessary files and supporting
data (e.g., integrity verification
information, provenance data) to
be retained for each software
release.
PS.3.2: Collect, safeguard,
maintain, and share provenance
data for all components of each
software release (e.g., in a
software bill of materials
[SBOM]).

www.uefi.org 36

NIST SP 800-218 Checklist (PW.1)
Design Software to Meet Security Requirements and Mitigate Security Risks

Identify and evaluate the security
requirements for the software; determine
what security risks the software is likely
to face during operation and how the
software’s design and architecture should
mitigate those risks; and justify any cases
where risk-based analysis indicates that
security requirements should be relaxed
or waived.
Addressing security requirements and
risks during software design (secure by
design) is key for improving software
security and also helps improve
development efficiency.

PW.1.1: Use forms of risk modeling – such
as threat modeling, attack modeling, or
attack surface mapping – to help assess
the security risk for the software.
PW.1.2: Track and maintain the software’s
security requirements, risks, and design
decisions.
PW.1.3: Where appropriate, build in
support for using standardized security
features and services (e.g., enabling
software to integrate with existing log
management, identity management,
access control, and vulnerability
management systems) instead of creating
proprietary implementations of security
features and services.

www.uefi.org 37

NIST SP 800-218 Checklist (PW.2)
Review the Software Design to Verify Compliance with Security Requirements and Risk Information

Help ensure that the software
will meet the security
requirements and
satisfactorily address the
identified risk information.

PW.2.1: Have 1) a qualified
person (or people) who were
not involved with the design
and/or 2) automated processes
instantiated in the toolchain
review the software design to
confirm and enforce that it
meets all of the security
requirements and satisfactorily
addresses the identified risk
information.

www.uefi.org 38

NIST SP 800-218 Checklist (PW.4)
Reuse Existing, Well-Secured Software When Feasible Instead of Duplicating Functionality

Lower the costs of software development,
expedite software development, and decrease
the likelihood of introducing additional security
vulnerabilities into the software by reusing
software modules and services that have
already had their security posture checked.
This is particularly important for software that
implements security functionality, such as
cryptographic modules and protocols.

PW.4.1: Acquire and maintain well-secured
software components (e.g., software libraries,
modules, middleware, frameworks) from
commercial, open-source, and other third-party
developers for use by the organization’s
software.
PW.4.2: Create and maintain well-secured
software components in-house following SDLC
processes to meet common internal software
development needs that cannot be better met
by third-party software components.
PW.4.4: Verify that acquired commercial, open-
source, and all other third-party software
components comply with the requirements, as
defined by the organization, throughout their life
cycles.

www.uefi.org 39

NIST SP 800-218 Checklist (PW.5)
Create Source Code by Adhering to Secure Coding Practices

Decrease the number of
security vulnerabilities in
the software and reduce
costs by minimizing
vulnerabilities introduced
during source code creation
that meet or exceed
organization-defined
vulnerability severity
criteria.

PW.5.1: Follow all secure
coding practices that are
appropriate to the
development languages and
environment to meet the
organization’s requirements.

www.uefi.org 40

NIST SP 800-218 Checklist (PW.6)
Configure the Compilation, Interpreter, and Build Processes to Improve Executable Security

Decrease the number of
security vulnerabilities in
the software and reduce
costs by eliminating
vulnerabilities before
testing occurs.

PW.6.1: Use compiler,
interpreter, and build tools
that offer features to
improve executable security.
PW.6.2: Determine which
compiler, interpreter, and
build tool features should be
used and how each should
be configured, then
implement and use the
approved configurations.

www.uefi.org 41

NIST SP 800-218 Checklist (PW.7)
Review and/or Analyze Human-Readable Code to Identify Vulnerabilities and Verify Compliance with
Security Requirements

Help identify vulnerabilities so that they
can be corrected before the software is
released to prevent exploitation.
Using automated methods lowers the
effort and resources needed to detect
vulnerabilities. Human-readable code
includes source code, scripts, and any
other form of code that an organization
deems human-readable.

PW.7.1: Determine whether code review
(a person looks directly at the code to find
issues) and/or code analysis (tools are
used to find issues in code, either in a fully
automated way or in conjunction with a
person) should be used, as defined by the
organization.
PW.7.2: Perform the code review and/or
code analysis based on the organization’s
secure coding standards, and record and
triage all discovered issues and
recommended remediations in the
development team’s workflow or issue
tracking system.

www.uefi.org 42

NIST SP 800-218 Checklist (PW.8)
Test Executable Code to Identify Vulnerabilities and Verify Compliance with Security Requirements

Help identify vulnerabilities so that
they can be corrected before the
software is released in order to
prevent exploitation.
Using automated methods lowers
the effort and resources needed to
detect vulnerabilities and improves
traceability and repeatability.
Executable code includes binaries,
directly executed bytecode and
source code, and any other form of
code that an organization deems
executable.

PW.8.1: Determine whether
executable code testing should be
performed to find vulnerabilities not
identified by previous reviews,
analysis, or testing and, if so, which
types of testing should be used.
PW.8.2: Scope the testing, design the
tests, perform the testing, and
document the results, including
recording and triaging all discovered
issues and recommended
remediations in the development
team’s workflow or issue tracking
system.

www.uefi.org 43

NIST SP 800-218 Checklist (PW.9)
Configure Software to Have Secure Settings by Default

Help improve the security of the
software at the time of installation to
reduce the likelihood of the software
being deployed with weak security
settings, putting it at greater risk of
compromise.

PW.9.1: Define a secure baseline by
determining how to configure each
setting that has an effect on security
or a security-related setting so that
the default settings are secure and do
not weaken the security functions
provided by the platform, network
infrastructure, or services.
PW.9.2: Implement the default
settings (or groups of default settings,
if applicable), and document each
setting for software administrators.

www.uefi.org 44

NIST SP 800-218 (RV.1)
Identify and Confirm Vulnerabilities on an Ongoing Basis

Help ensure that vulnerabilities are identified
more quickly so that they can be remediated
more quickly in accordance with risk, reducing
the window of opportunity for attackers.

RV.1.1: Gather information from software
acquirers, users, and public sources on
potential vulnerabilities in the software and
third-party components that the software
uses, and investigate all credible reports.

RV.1.2: Review, analyze, and/or test the
software’s code to identify or confirm the
presence of previously undetected
vulnerabilities.

RV.1.3: Have a policy that addresses
vulnerability disclosure and remediation,
and implement the roles, responsibilities,
and processes needed to support that policy.

www.uefi.org 45

NIST SP 800-218 (RV.2)
Assess, Prioritize, and Remediate Vulnerabilities

Help ensure that
vulnerabilities are remediated
in accordance with risk to
reduce the window of
opportunity for attackers.

RV.2.1: Analyze each
vulnerability to gather
sufficient information
about risk to plan its
remediation or other risk
response.
RV.2.2: Plan and implement
risk responses for
vulnerabilities.

www.uefi.org 46

NIST SP 800-218 (RV.3)
Analyze Vulnerabilities to Identify Their Root Causes

Help reduce the frequency of vulnerabilities in
the future.

RV.3.1: Analyze identified vulnerabilities to
determine their root causes.

RV.3.2: Analyze the root causes over time to
identify patterns, such as a particular secure
coding practice not being followed
consistently.

RV.3.3: Review the software for similar
vulnerabilities to eradicate a class of
vulnerabilities, and proactively fix them
rather than waiting for external reports.

RV.3.4: Review the SDLC process, and
update it if appropriate to prevent (or
reduce the likelihood of) the root cause
recurring in updates to the software or in
new software that is created.

www.uefi.org 47

	UEFI Goes to Washington
	Agenda
	Why Does The U.S. Government Care?
	UEFI Firmware Security Incidents
	Security Trends – March to August 2023
	Time To Fix
	U.S. Government Interest In Securing UEFI
	U.S. Government Steps Toward Securing UEFI Deployments
	CISA’s “Bolster UEFI Security Now” Blog
	CISA’s “Bolster UEFI Security Now” Blog
	End-User & Security Response
	End-User & Security Response
	End-User & Security Response
	NIST SP 800-218 Attestation
	NIST SP 800-218
	Key Points To NIST SP 800-218
	NIST SP 800-218 Attestation Form
	NIST SP 800-218 Attestation Form
	Software Bill of Materials (SBOM)
	Implementation Details
	Sample SPDX
	Implementation Details
	Sample Module SWID XML SBOM
	Possible Future SBOM Efforts
	Call to Action
	Links
	Slide Number 27
	Backup
	NIST SP 800-218 Checklist (PO.1)�Define Security Requirements for Software Development
	NIST SP 800-218 Checklist (PO.2)�Implement Roles and Responsibilities
	NIST SP 800-218 Checklist (PO.3)�Implement Supporting Toolchains
	NIST SP 800-218 Checklist (PO.4)�Define and Use Criteria for Software Security Checks
	NIST SP 800-218 Checklist (PO.5)�Implement and Maintain Secure Environments for Software Development
	NIST SP 800-218 Checklist (PS.1)�Protect All Forms of Code from Unauthorized Access and Tampering
	NIST SP 800-218 Checklist (PS.2)�Provide a Mechanism for Verifying Software Release Integrity
	NIST SP 800-218 Checklist (PS.3)�Archive and Protect Each Software Release
	NIST SP 800-218 Checklist (PW.1)�Design Software to Meet Security Requirements and Mitigate Security Risks
	NIST SP 800-218 Checklist (PW.2)�Review the Software Design to Verify Compliance with Security Requirements and Risk Information
	NIST SP 800-218 Checklist (PW.4)�Reuse Existing, Well-Secured Software When Feasible Instead of Duplicating Functionality
	NIST SP 800-218 Checklist (PW.5)�Create Source Code by Adhering to Secure Coding Practices
	NIST SP 800-218 Checklist (PW.6)�Configure the Compilation, Interpreter, and Build Processes to Improve Executable Security
	NIST SP 800-218 Checklist (PW.7)�Review and/or Analyze Human-Readable Code to Identify Vulnerabilities and Verify Compliance with Security Requirements
	NIST SP 800-218 Checklist (PW.8)�Test Executable Code to Identify Vulnerabilities and Verify Compliance with Security Requirements
	NIST SP 800-218 Checklist (PW.9)�Configure Software to Have Secure Settings by Default
	NIST SP 800-218 (RV.1)�Identify and Confirm Vulnerabilities on an Ongoing Basis
	NIST SP 800-218 (RV.2)�Assess, Prioritize, and Remediate Vulnerabilities
	NIST SP 800-218 (RV.3)�Analyze Vulnerabilities to Identify Their Root Causes

