
presented by

UEFI Key Management Service (KMS)
With TPM

UEFI Fall 2023 Developers Conference & Plugfest
October 9-12, 2023

Presented by Felix Polyudov and Frederick Otumfuor

www.uefi.org 1

Agenda

• Introduction
• TPM-based KMS Design
• KMS Improvements
• Questions

www.uefi.org 2

What and Why?

• What’s this presentation about?
– UEFI Key Management Service (KMS)

• Theory of operation
• Implementation Options
• Introduce a TPM-based solution

• Why KMS?
– Educational value: one of the less known UEFI protocols
– Practical value: helps solving real-life use cases

• Provides Standardized Key Management API
• Abstracts KMS details from the protocol consumer

– Popularization: it takes two to tango
• Key management tasks are often solved with in-house solutions that do not scale well
• Increased awareness is a precondition of increased availability

www.uefi.org 3

typedef struct _EFI_KMS_SERVICE_PROTOCOL
{
 EFI_KMS_GET_SERVICE_STATUS GetServiceStatus;
 EFI_KMS_REGISTER_CLIENT RegisterClient;
 EFI_KMS_CREATE_KEY CreateKey;
 EFI_KMS_GET_KEY GetKey;
 EFI_KMS_ADD_KEY AddKey;
 EFI_KMS_DELETE_KEY DeleteKey;
 EFI_KMS_GET_KEY_ATTRIBUTES GetKeyAttributes;
 EFI_KMS_ADD_KEY_ATTRIBUTES AddKeyAttributes;
 EFI_KMS_DELETE_KEY_ATTRIBUTES DeleteKeyAttributes;
 EFI_KMS_GET_KEY_BY_ATTRIBUTES GetKeyByAttributes;
 UINT32 ProtocolVersion;
 EFI_GUID ServiceId;
 CHAR16 *ServiceName;
 UINT32 ServiceVersion;
 BOOLEAN ServiceAvailable;
 BOOLEAN ClientIdSupported;
 BOOLEAN ClientIdRequired;
 UINT16 ClientIdMaxSize;
 UINT8 ClientNameStringTypes;
 BOOLEAN ClientNameRequired;
 UINT16 ClientNameMaxCount;
 BOOLEAN ClientDataSupported;
 UINTN ClientDataMaxSize;
 BOOLEAN KeyIdVariableLenSupported;
 UINTN KeyIdMaxSize;
 UINTN KeyFormatsCount;
 EFI_GUID *KeyFormats;
 BOOLEAN KeyAttributesSupported;
 UINT8 KeyAttributeIdStringTypes;
 UINT16 KeyAttributeIdMaxCount;
 UINTN KeyAttributesCount;
 EFI_KMS_KEY_ATTRIBUTE *KeyAttributes;
} EFI_KMS_PROTOCOL;

www.uefi.org 4

• Protocol for managing keys that
supports:
– Key generation, retrieval, and persistent storage

– Multiple key types (AES, RSA, SHA) and formats

(ASCII, UTF-8)

– Client-based key handling

– Import of external keys

– Attaching attributes and client data to a key

– Init on-demand (start only if needed to optimize

boot performance)

What's KMS?

What Do You Do With KMS?

• Storage unlocking/decryption (Opal drives, password protected drives,
secure RAID controllers)

• Management of machine-maintained passwords
• Management of user passwords

– Secure Storage (KMS can be used to securely store user passwords)
– Encryption facilitation (Passwords can be encrypted using KMS provided keys

and then stored in the NVRAM or other unsecure storage)
• Device coupling (Couple device or system with a local KMS. For example,

couple blade server with a specific server rack)
• Device attestation (secure handling of the device fingerprints)
• Firmware code or data encryption (encryption of the configuration data or

critical portions of code)
• RPMC-based storage (manage keys and counters with KMS)

www.uefi.org 5

Is It Safe To Use KMS?

• Make it secure
– The main challenge: KMS should be readily available to the good guys and

protected from the bad guys
– Ways to secure KMS

• Temporal protection
– Disable some or all KMS facilities at certain boot stage (typically on transitioning between

trust boundaries)
• Client verification

– RegisterClient interface allows for limited authentication of the caller

• Make it reliable
– KMS deployment strategy should encompass provisioning and recovery

scenarios
• What happens when KMS provider is not available (temporary or permanently)?
• What’s the process of repurposing, replacement or ownership transfer for a KMS

protected platform or device?

www.uefi.org 6

How Do You Make a KMS?

• Multiple implementation options
– Local (build KMS on top of device that is part of the system)

• TPM based
• BMC based
• DC-SCM based
• Special hardware based (peripheral device connected via standard

interface, such as PCI or USB, or a custom interface)
– Remote (build KMS on top of transport layer talking to a

remote service provider)
• Over the network (for example, based on KMIP protocol)

www.uefi.org 7

TPM-Based KMS Implementation

www.uefi.org 8

Why TPM and Not Any Other HSM Device?

• TPM is an obvious choice because of industry
support and its ubiquity

• No extra BOM cost to add another Crypto Device
• TPM can create and securely store keys
• TPM has a flexible policy infrastructure that can be

used to control access to TPM KMS objects
• Can be used independently or be used for

redundancy Support to KMIP Server

www.uefi.org 9

Considerations on Using TPM as a KMS HSM

• Directed by the platform need and trust policies for the
platform

• Should be informed by current industry specifications from TCG
– TCG PFP Specifications
– TCG Platform Certificate Profile
– TPM 2.0 Keys for Device Identity and Attestation
– DICE Protection Environment
– SP 800-133 Recommendation for Cryptographic Key Generation

www.uefi.org 10

• TPM Policies
- When should TPM objects for KMS be available?
- Who should be able to use those objects and when should they be locked?

• Keys created in the TPM (Restrictions)
- Primary key (Fixed, Restrictions, Policy)

• Hierarchy Consideration (Storage Hierarchy, Platform Hierarchy)

www.uefi.org 11

Common Components That All Design
Solutions Will Need

www.uefi.org 12

TPM Key Policy
(defined by platform

assertions- PCR
bound, TPM NV

Policy etc)

TPM Key Objects
(fixedTPM, Fixed

Parent, Restricted,
Hierarchy

considerations)

TPM NV Object
TPM NV Access

Policy
TPM KMS Interface

Engine (getId,
CreateKey, Delete

Key..)

Generic KMS Interface Abstraction Layer

Request
Response

Sample Simple Implementation
HSM layer

TPM 2.0 Device

Standard
TPM 2.0
Device

www.uefi.org 13

TPM Key Policy
(defined by platform

assertions- PCR
bound, TPM NV

Policy etc)

TPM Key Objects
(fixedTPM, Fixed

Parent, Restricted,
Hierarchy

considerations)

TPM NV Object
TPM NV Access

Policy
TPM KMS Interface

Engine (getId,
CreateKey, Delete

Key..)

Generic KMS Interface Abstraction Layer

Request
Response

Sample Implementation
HSM layer

TPM 2.0 Device

Standard
TPM 2.0
Device

Intrusion

Intrusion

www.uefi.org 14

TPM Key Policy
(defined by platform

assertions- PCR
bound, TPM NV

Policy etc)

TPM Key Objects
(fixedTPM, Fixed

Parent, Restricted,
Hierarchy

considerations)

TPM NV Object
TPM NV Access

Policy

Generic KMS Interface Abstraction Layer

Standard
TPM 2.0
Device

Making It Better

TPM
 FW

 w
ith SPDM

Com

m
unication

TPM with SPDM
Responder

Request
Response,
Sessions?

TPM KMS Interface
Engine (getId,

CreateKey, Delete
Key..)

HSM layer

TPM 2.0 Device
Intrusion

Client
Registration, PKI

Challenges

• Not one size fits all
– Policies should be directed by platform security assertions

and use case requirements
– Considerations

• Using PCR based policies can be brittle
• TPM NV, TPM Authorize policies remove brittleness headache but

also have their own Policy management headaches
– (TPM Authorize, PolicySigned, allows an easier path to recovery for a broken

TPM but that implies using another Key management infrastructure. Probably,
KMIP)

www.uefi.org 15

How To Make It Better?

• Improve availability
– Today IHV’s can’t universally rely on KMS being part of the UEFI firmware

• Improve protocol description
– Better document data persistence (what is persevered across boot boundaries), usage of

client data and key attributes
– Provide usage examples

• Build a threat model
• Consider potential interface improvements

– Add support for longer keys and additional key types
– Client-based locking (explicit interface to lock keys and/or services)
– Programmatic mechanism to get more information about KMS provider (local/remove,

underlying device, etc.)
• One way to do it is by defining standard ServiceId GUIDs for a mainstream KMS types

– Interface to get amount of a key storage available to a client
• Introduce MM version of the protocol in PI spec

www.uefi.org 16

Thanks for attending the UEFI Fall 2023
Developers Conference & Plugfest

For more information on UEFI Forum and UEFI
Specifications, visit http://www.uefi.org

presented by

www.uefi.org 17

http://www.uefi.org/

	UEFI Key Management Service (KMS) With TPM
	Agenda
	What and Why?
	Slide Number 4
	What Do You Do With KMS?
	Is It Safe To Use KMS?
	How Do You Make a KMS?
	TPM-Based KMS Implementation
	Why TPM and Not Any Other HSM Device?
	Considerations on Using TPM as a KMS HSM
	Common Components That All Design Solutions Will Need
	Sample Simple Implementation
	Sample Implementation
	Making It Better
	Challenges
	How To Make It Better?
	Slide Number 17

