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Agenda

• Introduction
• TPM-based KMS Design
• KMS Improvements
• Questions 
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What and Why?

• What’s this presentation about?
– UEFI Key Management Service (KMS)

• Theory of operation
• Implementation Options
• Introduce a TPM-based solution

• Why KMS?
– Educational value: one of the less known UEFI protocols
– Practical value: helps solving real-life use cases

• Provides Standardized Key Management API
• Abstracts KMS details from the protocol consumer

– Popularization: it takes two to tango
• Key management tasks are often solved with in-house solutions that do not scale well
• Increased awareness is a precondition of increased availability
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typedef struct _EFI_KMS_SERVICE_PROTOCOL 
{
  EFI_KMS_GET_SERVICE_STATUS      GetServiceStatus;
  EFI_KMS_REGISTER_CLIENT         RegisterClient;
  EFI_KMS_CREATE_KEY              CreateKey;
  EFI_KMS_GET_KEY                 GetKey;
  EFI_KMS_ADD_KEY                 AddKey;
  EFI_KMS_DELETE_KEY              DeleteKey;
  EFI_KMS_GET_KEY_ATTRIBUTES      GetKeyAttributes;
  EFI_KMS_ADD_KEY_ATTRIBUTES      AddKeyAttributes;
  EFI_KMS_DELETE_KEY_ATTRIBUTES   DeleteKeyAttributes;
  EFI_KMS_GET_KEY_BY_ATTRIBUTES   GetKeyByAttributes;
  UINT32                          ProtocolVersion;
  EFI_GUID                        ServiceId;
  CHAR16                          *ServiceName;
  UINT32                          ServiceVersion;
  BOOLEAN                         ServiceAvailable;
  BOOLEAN                         ClientIdSupported;
  BOOLEAN                         ClientIdRequired;
  UINT16                          ClientIdMaxSize;
  UINT8                           ClientNameStringTypes;
  BOOLEAN                         ClientNameRequired;
  UINT16                          ClientNameMaxCount;
  BOOLEAN                         ClientDataSupported;
  UINTN                           ClientDataMaxSize;
  BOOLEAN                         KeyIdVariableLenSupported;
  UINTN                           KeyIdMaxSize;
  UINTN                           KeyFormatsCount;
  EFI_GUID                        *KeyFormats;
  BOOLEAN                         KeyAttributesSupported;
  UINT8                           KeyAttributeIdStringTypes;
  UINT16                          KeyAttributeIdMaxCount;
  UINTN                           KeyAttributesCount;
  EFI_KMS_KEY_ATTRIBUTE           *KeyAttributes;
} EFI_KMS_PROTOCOL;
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• Protocol for managing keys that 
supports:
– Key generation, retrieval, and persistent storage

– Multiple key types (AES, RSA, SHA) and formats 

(ASCII, UTF-8)

– Client-based key handling

– Import of external keys

– Attaching attributes and client data to a key

– Init on-demand (start only if needed to optimize 

boot performance)

What's KMS?



What Do You Do With KMS?

• Storage unlocking/decryption (Opal drives, password protected drives, 
secure RAID controllers)

• Management of machine-maintained passwords
• Management of user passwords

– Secure Storage (KMS can be used to securely store user passwords)
– Encryption facilitation (Passwords can be encrypted using KMS provided keys 

and then stored in the NVRAM or other unsecure storage)
• Device coupling (Couple device or system with a local KMS. For example, 

couple blade server with a specific server rack)
• Device attestation (secure handling of the device fingerprints)
• Firmware code or data encryption (encryption of the configuration data or 

critical portions of code)
• RPMC-based storage (manage keys and counters with KMS)
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Is It Safe To Use KMS?

• Make it secure
– The main challenge: KMS should be readily available to the good guys and 

protected from the bad guys
– Ways to secure KMS

• Temporal protection
– Disable some or all KMS facilities at certain boot stage (typically on transitioning between 

trust boundaries)
• Client verification

– RegisterClient interface allows for limited authentication of the caller

• Make it reliable
– KMS deployment strategy should encompass provisioning and recovery 

scenarios
• What happens when KMS provider is not available (temporary or permanently)?
• What’s the process of repurposing, replacement or ownership transfer for a KMS 

protected platform or device?
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How Do You Make a KMS?

• Multiple implementation options
– Local (build KMS on top of device that is part of the system)

• TPM based
• BMC based
• DC-SCM based
• Special hardware based (peripheral device connected via standard 

interface, such as PCI or USB, or a custom interface)
– Remote (build KMS on top of transport layer talking to a 

remote service provider)
• Over the network (for example, based on KMIP protocol)
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TPM-Based KMS Implementation
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Why TPM and Not Any Other HSM Device?

• TPM is an obvious choice because of industry 
support and its ubiquity

• No extra BOM cost to add another Crypto Device
• TPM can create and securely store keys
• TPM has a flexible policy infrastructure that can be 

used to control access to TPM KMS objects
• Can be used independently or be used for 

redundancy Support to KMIP Server
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Considerations on Using TPM as a KMS HSM

• Directed by the platform need and trust policies for the 
platform

• Should be informed by current industry specifications from TCG
– TCG PFP Specifications
– TCG Platform Certificate Profile
– TPM 2.0 Keys for Device Identity and Attestation
– DICE Protection Environment
– SP 800-133 Recommendation for Cryptographic Key Generation
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• TPM Policies
- When should TPM objects for KMS be available?
- Who should be able to use those objects and when should they be locked?

• Keys created in the TPM (Restrictions)
- Primary key (Fixed, Restrictions, Policy)

• Hierarchy Consideration (Storage Hierarchy, Platform Hierarchy)
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Common Components That All Design 
Solutions Will Need
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Challenges

• Not one size fits all
– Policies should be directed by platform security assertions 

and use case requirements
– Considerations

• Using PCR based policies can be brittle
• TPM NV, TPM Authorize policies remove brittleness headache but 

also have their own Policy management headaches
– (TPM Authorize, PolicySigned, allows an easier path to recovery for a broken 

TPM but that implies using another Key management infrastructure. Probably, 
KMIP)
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How To Make It Better?

• Improve availability
– Today IHV’s can’t universally rely on KMS being part of the UEFI firmware

• Improve protocol description
– Better document data persistence (what is persevered across boot boundaries), usage of 

client data and key attributes
– Provide usage examples

• Build a threat model
• Consider potential interface improvements

– Add support for longer keys and additional key types
– Client-based locking (explicit interface to lock keys and/or services)
– Programmatic mechanism to get more information about KMS provider (local/remove, 

underlying device, etc.)
• One way to do it is by defining standard ServiceId GUIDs for a mainstream KMS types

– Interface to get amount of a key storage available to a client
• Introduce MM version of the protocol in PI spec
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Thanks for attending the UEFI Fall 2023 
Developers Conference & Plugfest

For more information on UEFI Forum and UEFI 
Specifications, visit http://www.uefi.org
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