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Dick Wilkins
Phoenix Technologies

What is the threat model for firmware?



Security should be a priority

• As Apps and OSes become more secure, 
firmware is a bigger target

• If platform firmware is compromised, 
that system cannot be secure
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Assume a hostile environment

• Check every external input
• Never rely on “security by obscurity” 
• Minimize your attack surface (disable 

unneeded features)
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Debug and security protection

• There are various compiler tools and 
build options for more secure firmware
– Many have been added to the TianoCore 

EDK II environment
– Enable these options during development
– Examples: ASLR, NX, /GS
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But…
• Remove debug interfaces (backdoors) in 

shipping code, hardware and software
• Be very careful of remote management 

interfaces (be careful of BMCs)
• ASSERTS in your code

– ASSERTs are for catching bugs that should never 
happen

– ASSERTs are not for catching possible errors or 
validating inputs
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SMM is particularly dangerous

• Insecure SMM code can run amok at Ring 0/1
– It is a good place to focus your security code 

reviews
– SMM code must never call out of SMRAM
– SMM code must copy input parameters and 

validate and use the copy, to prevent time-of-
check-time-of-use (TOCTOU) vulnerabilities
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Protection settings
• Flash memory protections should be properly 

set as early as possible
• Make sure this happens on S3 resume as well 

as boot
• Lock authenticated EFI variable regions early
• Set variables read-only if possible
• Make sure your code falls back to reasonable 

defaults if variables are compromised (prevent 
Denial of Service)
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Trevor Western
Insyde Software

How do we compensate for “C” 
language insecurities? 



The Insecurity of ‘C’
• ‘C’ is the most popular low-level systems 

programming language in the world

• ‘C’ is a very powerful and very dangerous 
programming language
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The Insecurity of ‘C’
• C has no mechanism to test that a memory pointer is valid – does the pointer 

really point to an actual memory type as intended?

• C permits code to access memory beyond the memory allocated and assigned 
to a function.  For example, code can modify a function’s return address in 
memory. Highly insecure!

• Code can be manipulated like data. Passing function addresses into routines.  
Easy to execute arbitrary code

• ‘C’ can be very complex.  For example, a declaration of a ‘pointer to an array of 
functions that return a pointer to an array of functions’ is legal

• Syntax is subtle and prone to mistakes.  Comparison and assignment operators 
are 1 character different and visually hard to distinguish
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The Insecurity of ‘C’
• Naturally Programmers are making lots of security-

related mistakes in C and UEFI
– Microsoft at the recent BlueHat conference revealed: “70% of all 

vulnerabilities were memory safety issues.”   “Terms like buffer 
overflow, race condition, page fault, null pointer, stack exhaustion, 
heap exhaustion or corruption, use after free, or double free --all 
describe memory safety vulnerabilities.”
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Making ‘C’ Less Insecure
• ‘C’ compilers are getting better:

– Turn on all warning options
– Enable stack overflow checks / heap checking. Now available in 

EDKII

• Ban the use of unsafe C library functions
– Use the StrN*S functions like StrnlenS().  Available in open source libs, 

such as EDKII
– Ban the use of complex functions with variable arguments, like print() or 

InstallMultipleProtocolInstances()
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Making ‘C’ Less Insecure
• Ban use of #pragmas and casts that tell the compiler to ignore the 

warnings or errors
• Assume that all arithmetic used to calculate memory allocations is 

wrong.
– Any code used to determine array offsets or memory allocation should be 

removed, especially if it is using signed integers.

• Run SCA tools
– Tools are better than ever and able to handle complexity
– Klocwork & Coverity are two of the most widely used

– MS VS2017 now has a usable SCA feature (too many FPs on VS2015)
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Other Languages
• Every Programming Language Has Weaknesses:

– “24 Deadly Sins of Software Security: Programming Flaws and How to Fix 
Them” shows that most security issues can be seen in several 
programming languages

– RUST – ‘C’-like, but focusses on memory-safety and concurrency. Works 
well in low-resource devices.   See https://www.rust-lang.org/

• Security comes from following a security practice like SDL, 
not the coding language
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Eric Johnson
American Megatrends, Inc. 

How do we validate specific kinds of 
insecurities? 



Firmware is hard to validate

• Code comes from many sources
• Firmware must be stable before you can 

test
• Configuration changes affect validity of 

tests
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Code validation techniques
• Static Code Analysis Techniques

– Code Review
– Static Code Analyzer

• Dynamic Code Analysis Techniques
– Integration Testing
– Unit Testing
– Symbolic execution
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When to add new unit tests

• Fix a vulnerability
• Code that crosses trust boundary
• Developing new code
• Refactoring / bug fixing old code
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Unit testing SMI handlers
• Test each structure / pointer controlled 

by adversary
• Test conditional branches controlled by 

adversary
• Goal is 100% code coverage

– Symbolic Execution can help achieve this 
goal
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However…

• Full code coverage is impossible on 
complex projects
– Prioritize privileged code
– Use a combination  of validation 

techniques. i.e. fuzz testing, code review
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Open Source Code Validation Tools
• Symbolic Execution: 

– angr
– CRETE (already used on TianoCore)
– KLEE
– And more. See Wikipedia

• Unit Testing Frameworks
– Host-based Firmware Analyzer (available Q2)
– MicroPython Test Framework for UEFI
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Secure Coding Panel Discussion
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Questions? 



Thank you!
Join the UEFI Forum and become part of the 
solution: 
• www.uefi.org/membership

Contact the UEFI Forum:
• admin@uefi.org
Contact the USRT:
• For more information go to: www.uefi.org/security
• Email a firmware security issue or vulnerability to: 

security@uefi.org
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More Resources
• [Intel] “A Tour Beyond BIOS – Security Design Guide in EDK II”, September 2016

• [Howard] “24 Deadly Sins of Software Security: Programming Flaws and How 
to Fix Them”, Michael Howard, David LeBlanc, John Viega, McGraw-Hill, 2009, 
ISBN: 978- 0071626750

• [Apple] “Secure Coding Guide”, September 2016

• [Intel] “Using Host-based Firmware Analysis to Improve Platform Resiliency”, 
March 2019
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https://github.com/tianocore-docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Security_Design_Guide_in_EDK_II.pdf
https://developer.apple.com/library/mac/documentation/Security/Conceptual/SecureCodingGuide/Introduction.html
https://firmware.intel.com/sites/default/files/Intel_UsingHBFAtoImprovePlatformResiliency.pdf
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