
Secure Coding for UEFI Firmware
Presented by UEFI Forum

Tuesday, March 12, 2019

www.uefi.org 1

www.uefi.org 4

Secure Coding

Welcome & Introductions

www.uefi.org 2

Moderator: Brian Richardson
Firmware Ecosystem Development
Member Company: Intel Corporation
@intel_brian

Panelist: Trevor Western
Member Company: Insyde
Software

Panelist: Dick Wilkins
Member Company: Phoenix
Technologies

Panelist: Eric Johnson
Member Company: American Megatrends
Inc.

Dick Wilkins
Phoenix Technologies

What is the threat model for firmware?

Security should be a priority

• As Apps and OSes become more secure,
firmware is a bigger target

• If platform firmware is compromised,
that system cannot be secure

www.uefi.org 5

Assume a hostile environment

• Check every external input
• Never rely on “security by obscurity”
• Minimize your attack surface (disable

unneeded features)

www.uefi.org 6

Debug and security protection

• There are various compiler tools and
build options for more secure firmware
– Many have been added to the TianoCore

EDK II environment
– Enable these options during development
– Examples: ASLR, NX, /GS

www.uefi.org 7

But…
• Remove debug interfaces (backdoors) in

shipping code, hardware and software
• Be very careful of remote management

interfaces (be careful of BMCs)
• ASSERTS in your code

– ASSERTs are for catching bugs that should never
happen

– ASSERTs are not for catching possible errors or
validating inputs

www.uefi.org 8

SMM is particularly dangerous

• Insecure SMM code can run amok at Ring 0/1
– It is a good place to focus your security code

reviews
– SMM code must never call out of SMRAM
– SMM code must copy input parameters and

validate and use the copy, to prevent time-of-
check-time-of-use (TOCTOU) vulnerabilities

www.uefi.org 9

Protection settings
• Flash memory protections should be properly

set as early as possible
• Make sure this happens on S3 resume as well

as boot
• Lock authenticated EFI variable regions early
• Set variables read-only if possible
• Make sure your code falls back to reasonable

defaults if variables are compromised (prevent
Denial of Service)

www.uefi.org 10

Trevor Western
Insyde Software

How do we compensate for “C”
language insecurities?

The Insecurity of ‘C’
• ‘C’ is the most popular low-level systems

programming language in the world

• ‘C’ is a very powerful and very dangerous
programming language

www.uefi.org 12

The Insecurity of ‘C’
• C has no mechanism to test that a memory pointer is valid – does the pointer

really point to an actual memory type as intended?

• C permits code to access memory beyond the memory allocated and assigned
to a function. For example, code can modify a function’s return address in
memory. Highly insecure!

• Code can be manipulated like data. Passing function addresses into routines.
Easy to execute arbitrary code

• ‘C’ can be very complex. For example, a declaration of a ‘pointer to an array of
functions that return a pointer to an array of functions’ is legal

• Syntax is subtle and prone to mistakes. Comparison and assignment operators
are 1 character different and visually hard to distinguish

www.uefi.org 13

The Insecurity of ‘C’
• Naturally Programmers are making lots of security-

related mistakes in C and UEFI
– Microsoft at the recent BlueHat conference revealed: “70% of all

vulnerabilities were memory safety issues.” “Terms like buffer
overflow, race condition, page fault, null pointer, stack exhaustion,
heap exhaustion or corruption, use after free, or double free --all
describe memory safety vulnerabilities.”

www.uefi.org 14

Making ‘C’ Less Insecure
• ‘C’ compilers are getting better:

– Turn on all warning options
– Enable stack overflow checks / heap checking. Now available in

EDKII

• Ban the use of unsafe C library functions
– Use the StrN*S functions like StrnlenS(). Available in open source libs,

such as EDKII
– Ban the use of complex functions with variable arguments, like print() or

InstallMultipleProtocolInstances()

www.uefi.org 15

Making ‘C’ Less Insecure
• Ban use of #pragmas and casts that tell the compiler to ignore the

warnings or errors
• Assume that all arithmetic used to calculate memory allocations is

wrong.
– Any code used to determine array offsets or memory allocation should be

removed, especially if it is using signed integers.

• Run SCA tools
– Tools are better than ever and able to handle complexity
– Klocwork & Coverity are two of the most widely used

– MS VS2017 now has a usable SCA feature (too many FPs on VS2015)

www.uefi.org 16

Other Languages
• Every Programming Language Has Weaknesses:

– “24 Deadly Sins of Software Security: Programming Flaws and How to Fix
Them” shows that most security issues can be seen in several
programming languages

– RUST – ‘C’-like, but focusses on memory-safety and concurrency. Works
well in low-resource devices. See https://www.rust-lang.org/

• Security comes from following a security practice like SDL,
not the coding language

www.uefi.org 17

https://www.rust-lang.org/

Eric Johnson
American Megatrends, Inc.

How do we validate specific kinds of
insecurities?

Firmware is hard to validate

• Code comes from many sources
• Firmware must be stable before you can

test
• Configuration changes affect validity of

tests

www.uefi.org 19

Code validation techniques
• Static Code Analysis Techniques

– Code Review
– Static Code Analyzer

• Dynamic Code Analysis Techniques
– Integration Testing
– Unit Testing
– Symbolic execution

www.uefi.org 20

When to add new unit tests

• Fix a vulnerability
• Code that crosses trust boundary
• Developing new code
• Refactoring / bug fixing old code

www.uefi.org 21

Unit testing SMI handlers
• Test each structure / pointer controlled

by adversary
• Test conditional branches controlled by

adversary
• Goal is 100% code coverage

– Symbolic Execution can help achieve this
goal

www.uefi.org 22

However…

• Full code coverage is impossible on
complex projects
– Prioritize privileged code
– Use a combination of validation

techniques. i.e. fuzz testing, code review

www.uefi.org 23

Open Source Code Validation Tools
• Symbolic Execution:

– angr
– CRETE (already used on TianoCore)
– KLEE
– And more. See Wikipedia

• Unit Testing Frameworks
– Host-based Firmware Analyzer (available Q2)
– MicroPython Test Framework for UEFI

www.uefi.org 24

www.uefi.org 6

Secure Coding Panel Discussion

www.uefi.org 10

Questions?

Thank you!
Join the UEFI Forum and become part of the
solution:
• www.uefi.org/membership

Contact the UEFI Forum:
• admin@uefi.org
Contact the USRT:
• For more information go to: www.uefi.org/security
• Email a firmware security issue or vulnerability to:

security@uefi.org

www.uefi.org 11

http://www.uefi.org/membership
mailto:admin@uefi.org
http://www.uefi.org/security
mailto:security@uefi.org

More Resources
• [Intel] “A Tour Beyond BIOS – Security Design Guide in EDK II”, September 2016

• [Howard] “24 Deadly Sins of Software Security: Programming Flaws and How
to Fix Them”, Michael Howard, David LeBlanc, John Viega, McGraw-Hill, 2009,
ISBN: 978- 0071626750

• [Apple] “Secure Coding Guide”, September 2016

• [Intel] “Using Host-based Firmware Analysis to Improve Platform Resiliency”,
March 2019

www.uefi.org 28

https://github.com/tianocore-docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Security_Design_Guide_in_EDK_II.pdf
https://developer.apple.com/library/mac/documentation/Security/Conceptual/SecureCodingGuide/Introduction.html
https://firmware.intel.com/sites/default/files/Intel_UsingHBFAtoImprovePlatformResiliency.pdf

	Secure Coding for UEFI Firmware�
	Secure Coding
	Welcome & Introductions
	Dick Wilkins�Phoenix Technologies�
	Security should be a priority
	Assume a hostile environment
	Debug and security protection
	But…
	SMM is particularly dangerous
	Protection settings
	Trevor Western�Insyde Software�
	The Insecurity of ‘C’
	The Insecurity of ‘C’
	The Insecurity of ‘C’
	Making ‘C’ Less Insecure
	Making ‘C’ Less Insecure
	Other Languages
	Eric Johnson�American Megatrends, Inc. �
	Firmware is hard to validate
	Code validation techniques	
	When to add new unit tests
	Unit testing SMI handlers
	However…
	Open Source Code Validation Tools
	Secure Coding Panel Discussion
	Questions?
	Thank you!
	More Resources

