
presented by

Understanding UEFI and PI
Architectural Events

UEFI 2021 Virtual Plugfest

www.uefi.org 1

Meet the Presenter

Felix Polyudov
Director of Firmware Core Architecture,
AMI

www.uefi.org 2

What is UEFI Event?
• Event is a UEFI callback-based binary-to-binary communication

mechanism
– Like OS event objects
– Adopted to UEFI single-threaded environment
– Facilitated by UEFI Boot Services (UEFI 2.9 spec., ch. 7.1)

• Event Roles
– Actor: detects underlying condition
– Reactor(s).

• Can get notified via callback when even is signaled
• Can query event status

• PI specification defines simplified event-like callback mechanisms for PEI
and MM environments

• PI specification extends list of standard UEFI events

www.uefi.org 3

Let’s Dot the i's and Cross the t's

• UEFI vs PI
– UEFI is a Firmware to OS Interface. There are multiple ways to architect a UEFI solution
– PI is the mainstream UEFI implementation, but it’s just one of the ways to implement

UEFI
– The presentation covers both domains, but makes it clear which domain is implied

• Events vs UEFI Events
– Unless noted otherwise, term “event” is used by the presentation in a broad sense

referring to all kinds of UEFI and PI callback mechanisms
• MM vs SMM: what’s the difference?

– Spec view: SMM and MM used by the PI spec interchangeably
• SMM is an older name that was later replaced with a more architecture-neutral MM. However,

SMM is still used here and there.
– Views on the ground

• Some people use SMM and MM as a references to IA and ARM MM implementations
• Some people use SMM to refer to a Traditional MM implementation and MM to refer to a

Standalone MM implementation

www.uefi.org 4

Functional UEFI Event Classes
• Private events

– Events used by drivers to implement driver specific logic
• Protocol Specific Events

– Used for a protocol-specific notifications to protocol consumers
• Timer Events

– Timed one-shot or periodic callbacks
– UEFI Polling Mechanism
– PI 1.7 introduced a PEI timed callback mechanism (Delayed Dispatch PPI)

• Protocol Installation Notifications
– Private events can be registered with DXE Foundation to get signaled when protocol with

the specific GUID is installed
– PI specification defines a simplified (non-UEFI event based) protocol installation

notifications for PEI and MM environments
• System Events (UEFI and PI)

– System wide special conditions
– Boot Flow Events (important subclass of the System Events)

• Reaching certain point in the boot process
• Some of them are implemented as Protocol Installation Notifications

www.uefi.org 5

UEFI Event Notification Types

www.uefi.org

Driver Driver 1

DXE Foundation

Driver 2 … Driver N

Notify on Signaling

Driver Driver

DXE Foundation

Notify on Wait or Check

SignalEvent SignalEvent

Dispatch
event

callback
CheckEvent or
WaitForEvent

Event
Status

Dispatch event callbacks

Legend:
- Event actor
- Event reactors

Callbacks are dispatched based on their priority.
Three priority levels (TPLs) are defined:
• Callback (default)
• Notify (elevated)
• High (highest; reserved for use by the firmware)

Events are created with
• CreateEvent

• Peer-to-peer events
• CreateEventEx

• Broadcast events

MM and PEI Notification Callbacks
• Events are modeled

by Protocols/PPIs
with NULL
interfaces

• Akin to UEFI
Protocol Installation
Notifications

• No priority levels*

www.uefi.org 7

Driver Driver

PEI or MM Foundation

Install
Protocol/PPI

Legend:
- Event actor
- Event reactors

Driver Driver

Register
Protocol/PPI
Notification

callback

Dispatch
event

callback

…
(*) – PEI has an indirect way to introduce two priority levels.
See “PEI Notification Types” slide below for details.

Playing Safe with the Events
• Your code may be interrupted by the event callbacks

– Use UEFI TPL API to protect critical portions of the code against reentrancy
• Don’t assume a specific order of callback dispatching

– UEFI specification does not define execution order of the callbacks with the same TPL
– PI specification does not define execution order of the callbacks

• Never break TPL restrictions (UEFI spec., ch. 7.1, table 7-3)
– UEFI specification defines the highest priority level at which each interface can be used

• Use the lowest TPL possible
– If your event handler is not on TPL Callback, you should know why

• Don’t overburden the system with large number of timer events
– UEFI specification does not prescribe timer resolution. It is implementation specific.
– Large number of timer events can reduce system performance.

• Don’t overuse Protocol Installation Notification Callbacks
– In UEFI drivers prefer driver model over protocol callbacks to deal with the protocols of

the managed device
– In PI code prefer DepEx over protocol callbacks

www.uefi.org 8

System Events
• Memory Map Change (UEFI)

– Signaled whenever memory map changes
– Not fully supported by the edk2 implementation

• Reset System (UEFI)
– Signaled when ResetSystem() is invoked, and the system is about to

be reset(only prior to ExitBootServices() invocation).
– Not supported by the edk2 implementation

• DXE Dispatch (PI)
– Internal pluming used by DXE and MM Foundations

• Boot Flow
– To be discussed…

www.uefi.org 9

www.uefi.org 10

Boot Flow Events

Boot
Flow

PEI Boot Flow Events

www.uefi.org 11

Memory
Discovered**

End Of PEI

Master Boot
Mode Boot In Recovery

Mode

MM End Of PEI*

PEI Standalone MM

(*) – Not supported by edk2 implementation
(**) – a.k.a. Permanent Memory Installed PPI

Fun Facts and Things to Note
• Since PEI Boot Flow events are PPI notifications, they can be

used as callbacks or as dependencies
• Master Boot Mode PPI is typically installed prior to Memory

Discovered PPI, but it’s not required by the PI spec
• Boot in Recovery Mode PPI can be installed at any point in the

PEI execution before DxeIpl->Entry()
• According to the spec, if permanent and temporary RAM can co-

exist(mainstream scenario on IA platforms), temporary RAM
(CAR) should be disabled after Memory Discovered PPI
installation; however, edk2 implementation disables CAR before
the PPI installation

• Prefer dispatch notifications over callbacks notifications

www.uefi.org 12

PEI Notification Types
• PI Specification defines two types of PPI installation notifications(PI 1.7A, vol. 1, ch. 4.2, 7.4):

– Callback notification
• Callback functions are called right after the PPI installation (before returning from InstallPpi PEI service)

– Dispatch notification
• Invocation of callback functions is deferred until PEIM that installed the PPI returns control back to PEI

Foundation
• Dispatch notification type was originally intended to optimize stack usage by reducing

number of nested stack frames
– Thanks to hardware advances, stack overflow is not a typical problem, however, it still

occasionally happens. For example, it may happen
• On special boot paths

– On S3 resume due to reduced amount of available memory
– On Recovery due to increased memory usage

• On feature rich firmware configurations
• On embedded servers where small core hardware meets server feature set

• Dispatch notifications can be used as a control flow tool
– Dispatch notifications are guaranteed to by invoked after all the callback notifications has

been invoked

www.uefi.org 13

BDSBoot
Flow

DXE,BDS, and RT Boot Flow Events

www.uefi.org 14

DXE MM

(*) – Not supported by the edk2 implementation
(**) – Introduced in UEFI 2.9

MM UEFI Ready*

End Of DXE

DXE MM Ready To Lock Protocol

Ready To Boot

After Ready To Boot**

MM End Of DXE

MM Ready To Lock

MM Ready To
Boot

Before Exit Boot Services**

Exit Boot Services MM Exit Boot
Services

Legacy Boot

Virtual Address
Change

Runtime

Legend:
- Events defined by UEFI spec
- Event defined by the PI spec

Event Pairs
• UEFI and PI specs define 3 event pairs (events

signaled sequentially one after another) to
implement smooth transition between the phases
– First event presents the last chance to access system

interfaces and/or to change system configuration
before the transition

– Second event can be used by handlers that facilitate
the transition and by handlers that are interested in
the finalized pre-transition configuration

www.uefi.org 15

UEFI and PI Event Pairs
• End-of-DXE, MM Ready-to-lock (PI)

– End-of-DXE: last chance to use services that are to be disabled and
to modify hardware state that is to be locked

– MM Ready-to-lock: switch hardware into a secure state (e.g., lock
SPI writes), disable or harden software interfaces (e.g., stop
registration of new MM handlers, lock sensitive UEFI variables)

• Ready-to-Boot, After-Ready-to-Boot (UEFI)
– Ready-to-Boot: last chance to change system configuration before

the boot
– After-Ready-to-Boot: process pre-boot configuration (e.g., finalize

SMBIOS and/or ACPI tables, send config data to BKC)
• Before-Exit-Boot-Services, Exit-Boot-Services (UEFI)

– Before-Exit-Boot-Services: last chance to use the boot services
– Exit-Boot-Services: transition a driver to runtime

www.uefi.org 16

Fun Facts and Things to Note
• Don’t take event name literally

– End-of-DXE is not necessarily the end of DXE phase
• According to PI spec the event is signaled before “third party extensible modules such as UEFI

drivers and UEFI applications are executed”. So, a portion of BDS may run prior to this event
– MM is typically locked way before MM Ready-to-Lock is signaled

• DXE MM Ready-to-lock is a protocol
– Unlike the other non-MM boot flow events, this one is implemented as a protocol

• Relative order of peer DXE and MM events is not defined
– DXE Ready-to-Boot handlers may run before or after MM Ready-to-Boot handler

• MM Ready-to-Boot and MM Exit-Boot-Services are beyond the platform trust
boundary

– MM code should work properly if events are never signaled
– Any data coming form outside the MM environment should be treated as untrusted

• Ready-to-Boot can happen more than once
• Services called by Exit-Boot-Services callbacks may exhibit a boot time or a runtime

behavior
• Services called by Virtual-Address-Change callbacks may not work as intended if

service being called has already transitioned to the virtual address memory map

www.uefi.org 17

Questions?

www.uefi.org 18

More Questions?

www.uefi.org 19

Following today’s webinar, join the live, interactive
WebEx Q&A for the opportunity to chat with the
presenter

Visit this link to attend: https://bit.ly/3aob7O7
Meeting number (access code): 182 688 4062
Meeting password: UEFIForum (83343678 from phones
and video systems)

https://bit.ly/3aob7O7

Thanks for attending the UEFI 2021 Virtual Plugfest

For more information on UEFI Forum and UEFI
Specifications, visit http://www.uefi.org

presented by

www.uefi.org 20

http://www.uefi.org/

	Understanding UEFI and PI Architectural Events
	Meet the Presenter
	What is UEFI Event?
	Let’s Dot the i's and Cross the t's
	Functional UEFI Event Classes
	UEFI Event Notification Types
	MM and PEI Notification Callbacks
	Playing Safe with the Events
	System Events
	Boot Flow Events
	PEI Boot Flow Events
	Fun Facts and Things to Note
	PEI Notification Types
	DXE,BDS, and RT Boot Flow Events
	Event Pairs
	UEFI and PI Event Pairs
	Fun Facts and Things to Note
	Questions?
	More Questions?
	Slide Number 20

