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What is UEFI Event?
• Event is a UEFI callback-based binary-to-binary communication 

mechanism
– Like OS event objects
– Adopted to UEFI single-threaded environment
– Facilitated by UEFI Boot Services (UEFI 2.9 spec., ch. 7.1)

• Event Roles
– Actor: detects underlying condition
– Reactor(s). 

• Can get notified via callback when even is signaled
• Can query event status

• PI specification defines simplified event-like callback mechanisms for PEI 
and MM environments

• PI specification extends list of standard UEFI events
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Let’s Dot the i's and Cross the t's

• UEFI vs PI
– UEFI is a Firmware to OS Interface. There are multiple ways to architect a UEFI solution
– PI is the mainstream UEFI implementation, but it’s just one of the ways to implement 

UEFI
– The presentation covers both domains, but makes it clear which domain is implied

• Events vs UEFI Events
– Unless noted otherwise, term “event” is used by the presentation in a broad sense 

referring to all kinds of UEFI and PI callback mechanisms
• MM vs SMM: what’s the difference?

– Spec view: SMM and MM used by the PI spec interchangeably
• SMM is an older name that was later replaced with a more architecture-neutral MM. However, 

SMM is still used here and there.
– Views on the ground

• Some people use SMM and MM as a references to IA and ARM MM implementations
• Some people use SMM to refer to a Traditional MM implementation and MM to refer to a 

Standalone MM implementation
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Functional UEFI Event Classes
• Private events

– Events used by drivers to implement driver specific logic
• Protocol Specific Events

– Used for a protocol-specific notifications to protocol consumers
• Timer Events

– Timed one-shot or periodic callbacks 
– UEFI Polling Mechanism
– PI 1.7 introduced a PEI timed callback mechanism (Delayed Dispatch PPI)

• Protocol Installation Notifications
– Private events can be registered with DXE Foundation to get signaled when protocol with 

the specific GUID is installed
– PI specification defines a simplified (non-UEFI event based) protocol installation 

notifications for PEI and MM environments
• System Events (UEFI and PI)

– System wide special conditions
– Boot Flow Events (important subclass of the System Events)

• Reaching certain point in the boot process
• Some of them are implemented as Protocol Installation Notifications
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UEFI Event Notification Types
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Driver Driver 1

DXE Foundation

Driver 2 … Driver N

Notify on Signaling

Driver Driver

DXE Foundation

Notify on Wait or Check

SignalEvent SignalEvent

Dispatch 
event 

callback
CheckEvent or
WaitForEvent

Event
Status

Dispatch event callbacks

Legend:
- Event actor
- Event reactors

Callbacks are dispatched based on their priority.
Three priority levels (TPLs) are defined:
• Callback (default)
• Notify (elevated)
• High (highest; reserved for use by the firmware)

Events are created with
• CreateEvent

• Peer-to-peer events
• CreateEventEx

• Broadcast events



MM and PEI Notification Callbacks
• Events are modeled 

by Protocols/PPIs 
with NULL 
interfaces

• Akin to UEFI 
Protocol Installation 
Notifications

• No priority levels*
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Driver Driver

PEI or MM Foundation

Install 
Protocol/PPI

Legend:
- Event actor
- Event reactors

Driver Driver

Register 
Protocol/PPI 
Notification 

callback

Dispatch 
event 

callback

…
(*) – PEI has an indirect way to introduce two priority levels.
See “PEI Notification Types” slide below for details.



Playing Safe with the Events
• Your code may be interrupted by the event callbacks

– Use UEFI TPL API to protect critical portions of the code against reentrancy
• Don’t assume a specific order of callback dispatching

– UEFI specification does not define execution order of the callbacks with the same TPL
– PI specification does not define execution order of the callbacks

• Never break TPL restrictions (UEFI spec., ch. 7.1, table 7-3)
– UEFI specification defines the highest priority level at which each interface can be used

• Use the lowest TPL possible
– If your event handler is not on TPL Callback, you should know why

• Don’t overburden the system with large number of timer events
– UEFI specification does not prescribe timer resolution. It is implementation specific.
– Large number of timer events can reduce system performance.

• Don’t overuse Protocol Installation Notification Callbacks
– In UEFI drivers prefer driver model over protocol callbacks to deal with the protocols of 

the managed device
– In PI code prefer DepEx over protocol callbacks
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System Events
• Memory Map Change (UEFI)

– Signaled whenever memory map changes
– Not fully supported by the edk2 implementation

• Reset System (UEFI)
– Signaled when ResetSystem() is invoked, and the system is about to 

be reset(only prior to ExitBootServices() invocation).
– Not supported by the edk2 implementation

• DXE Dispatch (PI)
– Internal pluming used by DXE and MM Foundations

• Boot Flow
– To be discussed…
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Boot 
Flow

PEI Boot Flow Events
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Memory 
Discovered**

End Of PEI

Master Boot 
Mode Boot In Recovery 

Mode

MM End Of PEI*

PEI Standalone MM

(*) – Not supported by edk2 implementation
(**) – a.k.a. Permanent Memory Installed PPI



Fun Facts and Things to Note
• Since PEI Boot Flow events are PPI notifications, they can be 

used as callbacks or as dependencies
• Master Boot Mode PPI is typically installed prior to Memory 

Discovered PPI, but it’s not required by the PI spec
• Boot in Recovery Mode PPI can be installed at any point in the 

PEI execution before DxeIpl->Entry()
• According to the spec, if permanent and temporary RAM can co-

exist(mainstream scenario on IA platforms), temporary RAM 
(CAR) should be disabled after Memory Discovered PPI 
installation; however, edk2 implementation disables CAR before 
the PPI installation

• Prefer dispatch notifications over callbacks notifications
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PEI Notification Types
• PI Specification defines two types of PPI installation notifications(PI 1.7A, vol. 1, ch. 4.2, 7.4):

– Callback notification
• Callback functions are called right after the PPI installation (before returning from InstallPpi PEI service)

– Dispatch notification
• Invocation of callback functions is deferred until PEIM that installed the PPI returns control back to PEI 

Foundation
• Dispatch notification type was originally intended to optimize stack usage by reducing 

number of nested stack frames
– Thanks to hardware advances, stack overflow is not a typical problem, however, it still 

occasionally happens. For example, it may happen
• On special boot paths

– On S3 resume due to reduced amount of available memory
– On Recovery due to increased memory usage

• On feature rich firmware configurations
• On embedded servers where small core hardware meets server feature set

• Dispatch notifications can be used as a control flow tool
– Dispatch notifications are guaranteed to by invoked after all the callback notifications has 

been invoked
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BDSBoot 
Flow

DXE,BDS, and RT Boot Flow Events
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DXE MM

(*) – Not supported by the edk2 implementation
(**) – Introduced in UEFI 2.9

MM UEFI Ready*

End Of DXE

DXE MM Ready To Lock Protocol

Ready To Boot

After Ready To Boot**

MM End Of DXE

MM Ready To Lock

MM Ready To 
Boot

Before Exit Boot Services**

Exit Boot Services MM Exit Boot 
Services

Legacy Boot

Virtual Address 
Change

Runtime

Legend:
- Events defined by UEFI spec
- Event defined by the PI spec



Event Pairs
• UEFI and PI specs define 3 event pairs (events 

signaled sequentially one after another) to 
implement smooth transition between the phases
– First event presents the last chance to access system 

interfaces and/or to change system configuration 
before the transition

– Second event can be used by handlers that facilitate 
the transition and by handlers that are interested in 
the finalized pre-transition configuration
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UEFI and PI Event Pairs
• End-of-DXE, MM Ready-to-lock (PI)

– End-of-DXE: last chance to use services that are to be disabled and 
to modify hardware state that is to be locked

– MM Ready-to-lock: switch hardware into a secure state (e.g., lock 
SPI writes), disable or harden software interfaces (e.g., stop 
registration of new MM handlers, lock sensitive UEFI variables)

• Ready-to-Boot, After-Ready-to-Boot (UEFI)
– Ready-to-Boot: last chance to change system configuration before 

the boot
– After-Ready-to-Boot: process pre-boot configuration (e.g., finalize 

SMBIOS and/or ACPI tables, send config data to BKC)
• Before-Exit-Boot-Services, Exit-Boot-Services (UEFI)

– Before-Exit-Boot-Services: last chance to use the boot services
– Exit-Boot-Services: transition a driver to runtime
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Fun Facts and Things to Note
• Don’t take event name literally

– End-of-DXE is not necessarily the end of DXE phase
• According to PI spec the event is signaled before “third party extensible modules such as UEFI 

drivers and UEFI applications are executed”. So, a portion of BDS may run prior to this event
– MM is typically locked way before MM Ready-to-Lock is signaled

• DXE MM Ready-to-lock is a protocol
– Unlike the other non-MM boot flow events, this one is implemented as a protocol

• Relative order of peer DXE and MM events is not defined
– DXE Ready-to-Boot handlers may run before or after MM Ready-to-Boot handler

• MM Ready-to-Boot and MM Exit-Boot-Services are beyond the platform trust 
boundary

– MM code should work properly if events are never signaled
– Any data coming form outside the MM environment should be treated as untrusted

• Ready-to-Boot can happen more than once
• Services called by Exit-Boot-Services callbacks may exhibit a boot time or a runtime 

behavior
• Services called by Virtual-Address-Change callbacks may not work as intended if 

service being called has already transitioned to the virtual address memory map
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Questions?
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More Questions?
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Following today’s webinar, join the live, interactive 
WebEx Q&A for the opportunity to chat with the 
presenter

Visit this link to attend: https://bit.ly/3aob7O7
Meeting number (access code): 182 688 4062
Meeting password: UEFIForum (83343678 from phones 
and video systems)

https://bit.ly/3aob7O7


Thanks for attending the UEFI 2021 Virtual Plugfest

For more information on UEFI Forum and UEFI 
Specifications, visit http://www.uefi.org
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